-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset 9. Landmark_validation_2B-PLS.R
80 lines (61 loc) · 4.35 KB
/
Dataset 9. Landmark_validation_2B-PLS.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
### Load packages
require( geomorph )
require( ape )
#Clear workspace
rm( list = ls() )
#Set working directory to where turtle landmark data (from supplemental folder) is stored
setwd( "INSERT DIRECTORY PATH" )
#Load landmark data and transform to correct format for GPA commands
temp.file <- list.files(pattern = ".csv")
landmark.data <- lapply (temp.file, read.csv, row.names=1)
names(landmark.data) <- gsub(".csv","",temp.file)
landmark.data.temp <- array(as.numeric(unlist(landmark.data)), dim = c(123, 3, 184)) #number of landmarks, number of dimensions (3D coordinates), number of specimens
dimnames(landmark.data.temp)[[3]] <- gsub(".csv","",temp.file)
dimnames(landmark.data.temp)[[1]] <- rownames(landmark.data[[1]])
dimnames(landmark.data.temp)[[2]] <- c("x","y","z")
#Load slider information and colour information for deformation plots
setwd( "INSERT DIRECTORY PATH" )
sliders <- read.csv("Dataset 4. sliders.turtles.csv", row.names=1)
colours <- as.character( read.csv("Dataset 5. landmark_colours.csv", row.names=1)[,1] )
#Load specimen information
setwd( "INSERT DIRECTORY PATH" )
specimen.info <- read.csv( "Dataset 2. Specimen info.csv", header = TRUE )
rownames( specimen.info ) <- specimen.info[ , "Specimen_name" ]
#Load tree
setwd( "INSERT DIRECTORY PATH" )
tree <- read.nexus( "Dataset 7. cal3tree.calibrated.txt" )
alternative.tree <- read.nexus("Dataset 8. mbltree.calibrated.txt")
#Write GPA data objects for the membranous and endosseous data separately
GPA.data <- landmark.data.temp
membranous.specimens <- which(grepl("membranous", dimnames( GPA.data )[[ 3 ]]) == TRUE)
endosseous.specimens <- which(grepl("endosseous", dimnames( GPA.data )[[ 3 ]]) == TRUE)
GPA.data.membranous <- GPA.data[,, membranous.specimens ]
GPA.data.endosseous <- GPA.data[,, endosseous.specimens ]
#Delete inner loop landmarks
ASC.loop.landmarks <- which(grepl("loop", dimnames( GPA.data.membranous )[[ 1 ]]) == TRUE)
GPA.data.membranous <- GPA.data.membranous[-ASC.loop.landmarks,,]
GPA.data.endosseous <- GPA.data.endosseous[-ASC.loop.landmarks,,]
sliders <- sliders[- which( grepl("loop", rownames(sliders)) == TRUE) , ]
rows.to.modify <- c( which( grepl("LSC", rownames(sliders)) == TRUE) , which(grepl("PSC", rownames(sliders)) == TRUE ) )
sliders[rows.to.modify, ] <-sliders[rows.to.modify, ] -39
#Do GPA of both datasets
GPA.membranous <- gpagen( GPA.data.membranous , curves = sliders , ProcD = F )
GPA.endosseous <- gpagen( GPA.data.endosseous , curves = sliders , ProcD = F )
#DO PCA ###not necessary here, but in case I want to examine individual PCA plots
PCA.membranous <- plotTangentSpace( GPA.membranous$coords , warpgrids = F )
PCA.endosseous <- plotTangentSpace( GPA.endosseous$coords , warpgrids = F )
# Change the names in the GPA object so they match tree names
dimnames(GPA.membranous$coords)[[3]] <- as.character( specimen.info[ membranous.specimens , "Species_ID" ] )
dimnames(GPA.endosseous$coords)[[3]] <- as.character( specimen.info[ endosseous.specimens , "Species_ID" ] )
#Prepare tree that has same tips as the shape data blocks
tree.temp <- drop.tip( tree , tree$tip.label[ ! tree$tip.label %in% dimnames( GPA.membranous$coords )[[ 3 ]] ] )
plot(tree.temp)
##Run phylogenetic two-block partial least squares comparison of skull shape and labyrinth shape
tbpls_fit <- phylo.integration( GPA.membranous$coords[ ,, tree.temp$tip.label ] , GPA.endosseous$coords[ ,, tree.temp$tip.label ] , phy = tree.temp )
##You can look at the relative importance so the 2B-PLS axes here. You'll see that only the first few are important
#These are proportions of 1.0
round( (tbpls_fit$svd$d^2) / sum((tbpls_fit$svd$d^2)) , 3 ) #returns variances explained by all 2BPLS axes
round( (tbpls_fit$svd$d^2) / sum((tbpls_fit$svd$d^2)) , 3 )[1:10] #returns variances explained by first ten 2BPLS axes
i = 1 #Use to select a 2BPLS axis for scatterplot and 3D shape deformations. "i=1" will select the first (most important) axis
plot( tbpls_fit$XScores[,i] , tbpls_fit$YScores[,i] , xlim = range( tbpls_fit$XScores[,i] ) + c( 0 , 0.005 ), bty = "l" )
text( tbpls_fit$XScores[,i] , tbpls_fit$YScores[,i] , labels = dimnames( tbpls_fit$XScores )[[ 1 ]] , cex = 0.6 , pos = 4 )