-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset 13. Labyrinth centroid size model comparisons.R
431 lines (343 loc) · 22.6 KB
/
Dataset 13. Labyrinth centroid size model comparisons.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# Load packages
require( geomorph )
require( ape )
require( qpcR )
require( nlme )
#Clear workspace
rm( list = ls() )
#Set working directory to where turtle landmark data (from supplemental folder: Dataset 3. Turtle labyrinth data) is stored
setwd( "INSERT DIRECTORY PATH" )
#Load landmark data and transform to correct format for GPA commands
temp.file <- list.files(pattern = ".csv")
landmark.data <- lapply (temp.file, read.csv, row.names=1)
names(landmark.data) <- gsub(".csv","",temp.file)
landmark.data.temp <- array(as.numeric(unlist(landmark.data)), dim = c(123, 3, 184)) #number of landmarks, number of dimensions (3D coordinates), number of specimens
dimnames(landmark.data.temp)[[3]] <- gsub(".csv","",temp.file)
dimnames(landmark.data.temp)[[1]] <- rownames(landmark.data[[1]])
dimnames(landmark.data.temp)[[2]] <- c("x","y","z")
#Load slider information and colour information for deformation plots
setwd( "INSERT DIRECTORY PATH" )
sliders <- read.csv("Dataset 4. sliders.turtles.csv", row.names=1)
colours <- as.character( read.csv("Dataset 5. landmark_colours.csv", row.names=1)[,1] )
#Load specimen information
setwd( "INSERT DIRECTORY PATH" )
specimen.info <- read.csv( "Dataset 2. Specimen info.csv", header = TRUE )
rownames( specimen.info ) <- specimen.info[ , "Specimen_name" ]
#Load tree
setwd( "INSERT DIRECTORY PATH" )
tree <- read.nexus( "Dataset 7. cal3tree.calibrated.txt" )
alternative.tree <- read.nexus("Dataset 8. mbltree.calibrated.txt")
#Do GPA of labyrinth shape for extant taxa that are present in the phylogeny and have skull shape data
GPA.data <- landmark.data.temp
tree.names <- as.character( specimen.info[ dimnames( GPA.data )[[ 3 ]] , "Tree_names" ] )
fossil.temp <- as.character( specimen.info[ dimnames( GPA.data )[[ 3 ]] , "Specimen_type" ] )
dimnames( GPA.data )[[ 3 ]][ !is.na( tree.names ) ] <- tree.names[ !is.na( tree.names ) ]
duplicate.specimens <- which( is.na(tree.names) == TRUE )
fossil.specimens <- which( fossil.temp == "fossil")
delete.these <- unique(c(duplicate.specimens, fossil.specimens))
GPA.data <- GPA.data[,, - delete.these]
GPA.labyrinth.extant <- gpagen( GPA.data , curves = sliders , ProcD = F )
labyrinth.Csize <- GPA.labyrinth.extant$Csize
labyrinth.Csize[ labyrinth.Csize > 5000 ] <- labyrinth.Csize[ labyrinth.Csize > 5000 ] / 1000
#exclude because it has no complete cranial measurements
labyrinth.Csize <- labyrinth.Csize[ - which(names(labyrinth.Csize) == "Trachemys_scripta") ]
#Prepare tree that has same tips as the shape data blocks
tree.temp <- drop.tip( tree , tree$tip.label[ ! tree$tip.label %in% names( labyrinth.Csize ) ] )
#Tree for sensitivity analysis
tree.temp.alternative <- drop.tip( alternative.tree , alternative.tree $tip.label[ ! alternative.tree $tip.label %in% names( labyrinth.Csize ) ] )
#Prepare metadata that matches the labyrinth size data
data.temp <- specimen.info[ specimen.info$Tree_names %in% tree.temp$tip.label , ]
rownames( data.temp ) <- data.temp$Tree_names
data.temp <- data.temp[ tree.temp$tip.label , ]
#Extract various things from metadata for analyses.
notwebbed <- data.temp$Forelimb == "not webbed - 0"
names( notwebbed ) <- rownames( data.temp )
minorlywebbed <- data.temp$Forelimb == "small - 1"
names( minorlywebbed ) <- rownames( data.temp )
moderatelywebbed <- data.temp$Forelimb == "extensive - 2"
names( moderatelywebbed ) <- rownames( data.temp )
extremelywebbed <- data.temp$Forelimb == "extensive - 3"
names( extremelywebbed ) <- rownames( data.temp )
flippered <- data.temp$Forelimb == "flipper - 4"
names( flippered ) <- rownames( data.temp )
##Habitat ecology
marine <- data.temp$Habitat_general == "marine"
names( marine ) <- rownames( data.temp )
which(marine == TRUE)
freshwater <- data.temp$Habitat_general == "freshwater"
names( freshwater ) <- rownames( data.temp )
which(freshwater == TRUE)
terrestrial <- data.temp$Habitat_general == "terrestrial"
names( terrestrial ) <- rownames( data.temp )
which(terrestrial == TRUE)
##Locomotor behaviour
bottom_dwelling <- data.temp$Habitual_habitat == "bottom_dwelling"
names( bottom_dwelling ) <- rownames( data.temp )
open_water <- data.temp$Habitual_habitat == "open_water_swimming"
names( open_water ) <- rownames( data.temp )
digging <- data.temp$Habitual_habitat == "digging"
names( digging ) <- rownames( data.temp )
terrestrial_walking <- data.temp$Habitual_habitat == "terrestrial_walking" | data.temp$Habitual_habitat == "digging" & !is.na( data.temp$Habitual_habitat )
names( terrestrial_walking ) <- rownames( data.temp )
##Neck retraction type categories
vertical <- data.temp $Retraction_type == "vertical"
names( vertical ) <- rownames( data.temp )
horizontal <- data.temp $Retraction_type == "sideways"
names( horizontal ) <- rownames( data.temp )
##Neck retraction type categories
full <- data.temp $Retratction_ability == "full"
names( full ) <- rownames( data.temp )
incomplete <- data.temp $Retratction_ability == "incomplete"
names( incomplete ) <- rownames( data.temp )
##Size proxies
skull_length.temp <- specimen.info$Skull_length_mm
names(skull_length.temp) <- specimen.info$Tree_names
skull_length.temp <- skull_length.temp[specimen.info$Tree_names %in% tree.temp$tip.label ]
skull_length.temp <- skull_length.temp[order(match(names(skull_length.temp), tree.temp$tip.label)) ]
skull_width.temp <- specimen.info$Skull_width_mm
names(skull_width.temp) <- specimen.info$Tree_names
skull_width.temp <- skull_width.temp[specimen.info$Tree_names %in% tree.temp$tip.label ]
skull_width.temp <- skull_width.temp[order(match(names(skull_width.temp), tree.temp$tip.label)) ]
skull_height.temp <- specimen.info$Skull_height_mm
names(skull_height.temp) <- specimen.info$Tree_names
skull_height.temp <- skull_height.temp[specimen.info$Tree_names %in% tree.temp$tip.label ]
skull_height.temp <- skull_height.temp[order(match(names(skull_height.temp), tree.temp$tip.label)) ]
##Skull geometry proxy
skull_geometry.temp <- skull_height.temp / skull_width.temp
#check frequency distribution
hist(skull_geometry.temp)
#check if these make sense
which(skull_geometry.temp[] == max(skull_geometry.temp))
which(skull_geometry.temp[] == min(skull_geometry.temp))
#Make a big data frame for analyses
df <- data.frame( notwebbed, minorlywebbed, moderatelywebbed, extremelywebbed, flippered ,
marine , freshwater, terrestrial,
bottom_dwelling , open_water , digging , terrestrial_walking,
vertical, horizontal,
full, incomplete,
skull_length = log10( skull_length.temp ) , skull_width = log10(skull_width.temp), skull_height = log10(skull_height.temp),
skull_box = data.temp[ tree.temp$tip.label , "logV_mm3" ] ,
labyrinth_Csize = log10( labyrinth.Csize )[ tree.temp$tip.label ] ,
skull_geometry = skull_geometry.temp)
#Print table to file
write.table(df, file = "Labyrinth_CSize_explanatory_variables.csv", sep=" ")
##In this script we're setting up all the combinations of explanatory variables for the right sizes of the models, and then running them all in a loop. This makes it easy to add regression models by extending the vector called "right.sides".
right.sides <- c( "1" ,
#following models ask can labyrinth size be predicted by skull size?
"skull_length" , "skull_width", "skull_height", "skull_box" ,
#can labyrinth size be predicted by the braincase aspect ratio?
"skull_geometry",
#the following models ask: do terrestrial turtles have a different mean labyrinth size than non-terrestrial trutles?
"notwebbed", "minorlywebbed", "moderatelywebbed", "extremelywebbed",
"flippered" , "marine" , "freshwater",
"terrestrial", "bottom_dwelling" , "open_water" , "digging", #"terrestrial_walking",
#####the following models ask: do turtles with specific neck retraction types have a different mean labyrinth size ?
"vertical", "horizontal",
#####the following models ask: do turtles with the ability of neck retraction have a different mean labyrinth size ?
"full", "incomplete",
#following models ask: is there an effect of braincase aspect ratio after skull size is taken into account?
"skull_box + skull_geometry",
#following models ask: do turtles of different webbing types have different labyrinth size means after skull size is accounted for?
"skull_box + notwebbed", "skull_box + minorlywebbed", "skull_box + moderatelywebbed", "skull_box + extremelywebbed", "skull_box + flippered",
#following models ask: do turtles of different habitat preferences have different labyrinth size means after skull size is accounted for?
"skull_box + marine" , "skull_box + freshwater" ,"skull_box + terrestrial" ,
#following models ask: do turtles of a specific locomotor behaviour have different labyrinth size means than other turtles after skull size is accounted for?
#terrestrial_walking = terrestrial, thus muted
"skull_box + bottom_dwelling" , "skull_box + open_water" , "skull_box + digging" , #"skull_box + terrestrial_walking" ,
#####the following models consider the neck retraction variables
"skull_box + vertical" , "skull_box + horizontal" ,
"skull_box + full" , "skull_box + incomplete" ,
#following models ask: are there independent effect of skull size, braincase aspect ratio, and ecology
"skull_box + skull_geometry + notwebbed", "skull_box + skull_geometry + minorlywebbed", "skull_box + skull_geometry + moderatelywebbed", "skull_box + skull_geometry + extremelywebbed", "skull_box + skull_geometry + flippered",
"skull_box + skull_geometry + marine" , "skull_box + skull_geometry + freshwater" ,"skull_box + skull_geometry + terrestrial" ,
"skull_box + skull_geometry + bottom_dwelling" , "skull_box + skull_geometry + open_water" , "skull_box + skull_geometry + digging" , #"skull_box + skull_geometry + terrestrial_walking" ,
"skull_box + skull_geometry + vertical" , "skull_box + skull_geometry + horizontal" ,
"skull_box + skull_geometry + full" , "skull_box + skull_geometry + incomplete" ,
#the following models ask whether the included independent ecological effetcs account for any of the variance after the other effects were taken into account;
#these specific effects were chosen because they were among best models in prior runs
"skull_box + skull_geometry + freshwater + terrestrial",
"skull_box + skull_geometry + open_water + notwebbed"
)
models <- paste( "labyrinth_Csize ~" , right.sides )
models <- lapply( models , as.formula )
#Run phylogenetic generalised least squares analyses (Grafen 1989) using Pagel's lambda correlation structure (Pagel 1999)
pgls.fits <- list()
for( i in 1:length( models ) ) {
pgls.fits[[ i ]] <- gls( models[[ i ]] , correlation= corPagel( 0.9 , tree.temp ), data = df )
}
#Stores summary of models (used for later applications)
model.summaries <- lapply( pgls.fits , summary )
#Compute AICc values for all models.
AICc.values <- as.numeric(lapply( pgls.fits , AICc ))
names(AICc.values) <- right.sides
#Store AICc, deltaAICc, relative likelihood and AICc weights into a dataframe, and order it by increasing AICc so that best model with lowest value is on top
AICc.delta.weigths <- data.frame(AICc.values, akaike.weights(AICc.values))
AICc.delta.weigths.sorted <- AICc.delta.weigths[order(AICc.delta.weigths[,1]),]
#Check if by accident any of the models are duplicates, in which case it should print FALSE for the respective item
length(AICc.delta.weigths.sorted$AICc.values) == length(unique(AICc.delta.weigths.sorted$AICc.values))
##Add several columns of useful comparators to table
#Calculate non-negligible AICc values based on 1/10th of AICc-weight of best model
non.negligible <- rep("negligible", length(AICc.delta.weigths.sorted$weights))
non.negligible.temp <- c(which(AICc.delta.weigths.sorted$weights > AICc.delta.weigths.sorted$weights[1]/10))
non.negligible[non.negligible.temp] <- "non-negligible"
non.negligible[1] <- "best model"
AICc.delta.weigths.sorted[,"AICc_weight_importance"] <- non.negligible
#Add cumulative AICc weights
AICc.delta.weigths.sorted[,"cum_AICc_weights"] <- cumsum(AICc.delta.weigths.sorted$weights)
#Add evidence ratios against best model; output value means 'best model is VALUE times likely to be the best model in AIC terms than is next best model'
evidence_ratio <- c()
for (i in 1:length(AICc.delta.weigths.sorted$weights)) {
evidence_ratio[i] <- AICc.delta.weigths.sorted$weights[1]/AICc.delta.weigths.sorted$weights[i]
}
AICc.delta.weigths.sorted[,"evidence_ratio_bestmodel"] <- evidence_ratio
#Add normalized preference probability against best model; ouput value means 'probability that best model is to be preferred over next best model is VALUE'
norm_preference_probability <- c()
for (i in 1:length(AICc.delta.weigths.sorted$weights)) {
norm_preference_probability[i] <- AICc.delta.weigths.sorted$weights[1]/(AICc.delta.weigths.sorted$weights[1] + AICc.delta.weigths.sorted$weights[i])
}
AICc.delta.weigths.sorted[,"norm_preference_prob_bestmodel"] <- norm_preference_probability
#Add lambda value
lambda.values <- c()
for (i in 1:length(pgls.fits)) {
lambda.values[i] <- as.numeric(pgls.fits[[i]]$modelStruct)
}
lambda.values.sorted <- lambda.values[order(AICc.delta.weigths[,1])]
AICc.delta.weigths.sorted[,"lambda"] <- lambda.values.sorted
#Add R2 Nagelkerke
#Define Log Likelihood of null model
LogL_null <- pgls.fits[[1]]$logLik
#define order by which original model sequence has to be ordered to represent best, next-best, etc.
besttoworst <- order(AICc.delta.weigths[,1])
#Extract all log liklihoods of all models (doesn't work with 'lapply( pgls.fits , logLik )' down the line because that also stored degrees of freedom etc, )
LogL.all.models <- list()
for( i in 1:length(pgls.fits) ) {
LogL.all.models[i] <- pgls.fits[[i]]$logLik
}
#Sort Log Likelihood according to AICc
Log.all.models.sorted <- list()
for( i in 1:length(LogL.all.models)) {
Log.all.models.sorted[i] <- LogL.all.models[besttoworst[i]]
}
#Calculate R2Nagerlke for all models
Log.all.models.sorted.temp <- as.numeric(Log.all.models.sorted)
R2.Nagelkerke.all.models <- list()
for( i in 1:length(Log.all.models.sorted) ) {
R2.Nagelkerke.all.models[i] <- 1-exp(-(2/length(df$labyrinth_Csize)) * (Log.all.models.sorted.temp[i] - LogL_null) )
}
#Add R2 to table
AICc.delta.weigths.sorted[,"R2"] <- as.numeric(R2.Nagelkerke.all.models)
#Examine table
AICc.delta.weigths.sorted
#Print table to file
write.table(AICc.delta.weigths.sorted, file = "Labyrinth_CSize_Models_AICc_table.csv", sep=" ")
#Subset AICc table to only export best models for table in paper
AICc.table.best.models <- AICc.delta.weigths.sorted[non.negligible.temp,]
write.table(AICc.table.best.models, file = "Labyrinth_CSize_Models_AICc_table_best_models.csv", sep=" ")
#Model coefficients are important extra information, but cannot be easily stored in same table, as each model has more than one coefficient
#Extract model coefficients
model.coefficients <- list()
for (i in 1:length(models) ) {
model.coefficients[[i]] <- coef(model.summaries[[i]])
}
#Order model coefficients according to increasing AICc scores of models
besttoworst <- order(AICc.delta.weigths[,1]) #order by which original model sequence has to be ordered to represent best, next-best, etc.
model.coefficients.ordered <- list()
for( i in 1:length(model.coefficients)) {
model.coefficients.ordered[i] <- model.coefficients[besttoworst[i]]
}
#Print all coefficents to file
capture.output(model.coefficients.ordered, file = "Labyrinth_CSize_Coefficients_all_models_ordered.txt")
#Extract coefficients for non-negigible models, as these will have to be reported and it's easier to oversee than all models' coefficients
coefficients.non.negigible.models <- model.coefficients.ordered[non.negligible.temp]
capture.output(coefficients.non.negigible.models, file = "Labyrinth_CSize_Coefficients_non_negigible_models.txt")
####Sensitivity analysis with different tree
#PGLS analysis
pgls.fits2 <- list()
for( i in 1:length( models ) ) {
pgls.fits2[[ i ]] <- gls( models[[ i ]] , correlation= corPagel( 0.9 , tree.temp.alternative ), data = df )
}
#Stores summary of models (used for later applications)
model.summaries2 <- lapply( pgls.fits2 , summary )
#Compute AICc values for all models.
AICc.values <- as.numeric(lapply( pgls.fits2 , AICc ))
names(AICc.values) <- right.sides
#Store AICc, deltaAICc, relative likelihood and AICc weights into a dataframe, and order it by increasing AICc so that best model with lowest value is on top
AICc.delta.weigths <- data.frame(AICc.values, akaike.weights(AICc.values))
AICc.delta.weigths.sorted <- AICc.delta.weigths[order(AICc.delta.weigths[,1]),]
#Check if by accident any of the models are duplicates, in which case it should print FALSE for the respective item
length(AICc.delta.weigths.sorted$AICc.values) == length(unique(AICc.delta.weigths.sorted$AICc.values))
##Add several columns of useful comparators to table
#Calculate non-negligible AICc values based on 1/10th of AICc-weight of best model
non.negligible <- rep("negligible", length(AICc.delta.weigths.sorted$weights))
non.negligible.temp <- c(which(AICc.delta.weigths.sorted$weights > AICc.delta.weigths.sorted$weights[1]/10))
non.negligible[non.negligible.temp] <- "non-negligible"
non.negligible[1] <- "best model"
AICc.delta.weigths.sorted[,"AICc_weight_importance"] <- non.negligible
#Add cumulative AICc weights
AICc.delta.weigths.sorted[,"cum_AICc_weights"] <- cumsum(AICc.delta.weigths.sorted$weights)
#Add evidence ratios against best model; output value means 'best model is VALUE times likely to be the best model in AIC terms than is next best model'
evidence_ratio <- c()
for (i in 1:length(AICc.delta.weigths.sorted$weights)) {
evidence_ratio[i] <- AICc.delta.weigths.sorted$weights[1]/AICc.delta.weigths.sorted$weights[i]
}
AICc.delta.weigths.sorted[,"evidence_ratio_bestmodel"] <- evidence_ratio
#Add normalized preference probability against best model; ouput value means 'probability that best model is to be preferred over next best model is VALUE'
norm_preference_probability <- c()
for (i in 1:length(AICc.delta.weigths.sorted$weights)) {
norm_preference_probability[i] <- AICc.delta.weigths.sorted$weights[1]/(AICc.delta.weigths.sorted$weights[1] + AICc.delta.weigths.sorted$weights[i])
}
AICc.delta.weigths.sorted[,"norm_preference_prob_bestmodel"] <- norm_preference_probability
#Add lambda value
lambda.values <- c()
for (i in 1:length(pgls.fits)) {
lambda.values[i] <- as.numeric(pgls.fits[[i]]$modelStruct)
}
lambda.values.sorted <- lambda.values[order(AICc.delta.weigths[,1])]
AICc.delta.weigths.sorted[,"lambda"] <- lambda.values.sorted
#Add R2 Nagelkerke
#Define Log Likelihood of null model
LogL_null <- pgls.fits2[[1]]$logLik
#define order by which original model sequence has to be ordered to represent best, next-best, etc.
besttoworst <- order(AICc.delta.weigths[,1])
#Extract all log liklihoods of all models (doesn't work with 'lapply( pgls.fits , logLik )' down the line because that also stored degrees of freedom etc, )
LogL.all.models <- list()
for( i in 1:length(pgls.fits2) ) {
LogL.all.models[i] <- pgls.fits2[[i]]$logLik
}
#Sort Log Likelihood according to AICc
Log.all.models.sorted <- list()
for( i in 1:length(LogL.all.models)) {
Log.all.models.sorted[i] <- LogL.all.models[besttoworst[i]]
}
#Calculate R2Nagerlke for all models
Log.all.models.sorted.temp <- as.numeric(Log.all.models.sorted)
R2.Nagelkerke.all.models <- list()
for( i in 1:length(Log.all.models.sorted) ) {
R2.Nagelkerke.all.models[i] <- 1-exp(-(2/length(df$labyrinth_Csize)) * (Log.all.models.sorted.temp[i] - LogL_null) )
}
#Add R2 to table
AICc.delta.weigths.sorted[,"R2"] <- as.numeric(R2.Nagelkerke.all.models)
#Examine table
AICc.delta.weigths.sorted
#Print table to file
write.table(AICc.delta.weigths.sorted, file = "Labyrinth_CSize_Models_AICc_table_alternative_tree.csv", sep=" ")
#Subset AICc table to only export best models for table in paper
AICc.table.best.models <- AICc.delta.weigths.sorted[non.negligible.temp,]
write.table(AICc.table.best.models, file = "Labyrinth_CSize_Models_AICc_table_best_models_alternative_tree.csv", sep=" ")
#Model coefficients are important extra information, but cannot be easily stored in same table, as each model has more than one coefficient
#Extract model coefficients
model.coefficients <- list()
for (i in 1:length(models) ) {
model.coefficients[[i]] <- coef(model.summaries2[[i]])
}
#Order model coefficients according to increasing AICc scores of models
besttoworst <- order(AICc.delta.weigths[,1]) #order by which original model sequence has to be ordered to represent best, next-best, etc.
model.coefficients.ordered <- list()
for( i in 1:length(model.coefficients)) {
model.coefficients.ordered[i] <- model.coefficients[besttoworst[i]]
}
#Print all coefficents to file
capture.output(model.coefficients.ordered, file = "Labyrinth_CSize_Coefficients_all_models_ordered_alternative_tree.txt")
#Extract coefficients for non-negigible models, as these will have to be reported and it's easier to oversee than all models' coefficients
coefficients.non.negigible.models <- model.coefficients.ordered[non.negligible.temp]
capture.output(coefficients.non.negigible.models, file = "Labyrinth_CSize_Coefficients_non_negigible_models_alternative_tree.txt")