-
Notifications
You must be signed in to change notification settings - Fork 1
/
dataset.py
50 lines (39 loc) · 1.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torchvision.transforms as transforms
import torch
from PIL import Image
import os
#Run dierctory and load images
def get_images_from_path(root):
images = []
for _,_,filename in os.walk(root):
for i, img_name in enumerate(filename):
path = os.path.join(root, img_name)
sample = Image.open(path)
sample = sample.convert(mode='L')
images.append(sample)
#if i > 250: #for debug
# break
print('{} Images loaded'.format(len(images)))
return images
#Custom dataset, only transform PIL to TENSOR
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, root, transform=None):
self.transform = transform
self.data = get_images_from_path(root)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
target = self.data[index]
if self.transform:
target = self.transform(target)
sample = target
sample, target = transforms.ToTensor()(sample), transforms.ToTensor()(target)
return sample, target
# the output of torchivision datasets are PIL images of range [0,1]
# gonna transform them to tensors [-1,1]
def get_dataset(batch_size, dataset, shuffle):
path = '../datasets/' + dataset
trainset = CustomDataset(root=path,
transform=None) #RGB images, loaded with PNG, with pixel values from 0 to 255
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,shuffle=shuffle, num_workers=0)
return trainloader