-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdijkstra_patrik_dominik_pordi.py
198 lines (168 loc) · 5.44 KB
/
dijkstra_patrik_dominik_pordi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Importing the library
import numpy as np
import pygame
from queue import PriorityQueue
import re
import time
# Initializing the three used colors
color = (255,255,255)
color_2 = (255,200,150)
color_3=(0,0,0)
# Initializing the map
pygame.init()
width, height = 600, 250
# Initializing surface
surface = pygame.Surface((width,height))
surface.fill(color_2)
# Drawing Rectangle
pygame.draw.rect(surface, color, pygame.Rect(5, 5, 590, 240))
pygame.draw.rect(surface, color_2, pygame.Rect(95, 145, 60, 100))
pygame.draw.rect(surface, color_2, pygame.Rect(95, 5, 60, 105))
pygame.draw.polygon(surface,color_2,[(230.5,84.61),(300,44.23),(369.5,84.61),(369.5,165.39),(300,205.77),(230.5,165.39)])
pygame.draw.polygon(surface,color_2,[(455,3.82),(515.59,125),(455,246.18)])
# Convert surface to a 2D array with 0 for the specific color and 1 for other colors
arr = np.zeros((surface.get_width(), surface.get_height()))
pixel = pygame.surfarray.pixels3d(surface)
arr[np.where((pixel == color_2).all(axis=2))] = 1
del pixel
# Function for action set
# 0:right,1:rightdown,2:down,3:leftdown,4:left,5:leftup,6:up,7:rightup
def move(lst,i):
coords=list(lst[3])
cost=lst[0]
if i==0:
coords[0]+=1
cost+=1
elif i==1:
coords[0]+=1
coords[1]+=1
cost+=1.4
elif i==2:
coords[1]+=1
cost+=1
elif i==3:
coords[0]-=1
coords[1]+=1
cost+=1.4
elif i==4:
coords[0]-=1
cost+=1
elif i==5:
coords[0]-=1
coords[1]-=1
cost+=1.4
elif i==6:
coords[1]-=1
cost+=1
elif i==7:
coords[0]+=1
coords[1]-=1
cost+=1.4
return(tuple(coords), cost)
# Start the algorithm, ask for user input in the given format, out of reachable points
while True:
print("Enter start x,y coordinates (e.g. 2,3): ")
user_input = input()
match = re.match(r'^\s*(\d+)\s*,\s*(\d+)\s*$', user_input)
if match:
x = int(match.group(1))
y = 250-int(match.group(2))
# Do something with x and y
if(arr[x,y]==1):
print("Start is inside of an obstacle, please try again")
else:
start=(x,y)
break
else:
print("Invalid input. Please enter x,y coordinates in the format 'x,y'.")
while True:
print("Enter goal x,y coordinates (e.g. 2,3): ")
user_input = input()
match = re.match(r'^\s*(\d+)\s*,\s*(\d+)\s*$', user_input)
if match:
x = int(match.group(1))
y = 250-int(match.group(2))
# Do something with x and y
if(arr[x,y]==1):
print("Goal is inside of an obstacle, please try again")
else:
goal=(x,y)
break
else:
print("Invalid input. Please enter x,y coordinates in the format 'x,y'.")
# Defining the require variables for the algorithm, the pixels is a dictionary for the explored nodes
pixels={}
d1 = [0, 0, -1, start]
Q = PriorityQueue()
Q.put(d1)
parent=-1
child=1
# Start the timer
start_time=time.time()
# The algorithm
while(True):
# Check if there is any pixel that we haven't visited yet
if(Q.empty()):
print("Goal is unreachable")
end_time=time.time()
break
# Popping the pixel with the lowest cost and adding it to the dictionary
first = Q.get()
pixels[first[1]]=[first[0],first[2],first[3]]
parent=first[1]
# Printing the latest element in the dictionary
print(pixels[first[1]])
# Checking if the goal was reached
if(first[3]==goal):
print("Goal reached")
end_time=time.time()
break
# Looping the 8 different actions
for i in range(0,8):
coords,cost=move(first,i)
# Checking if the new pixel is in the obstacle space or it was already explored
if((not(arr[coords]==1)) and (not(any(value[-1] == coords for value in pixels.values())))):
# Adding it to the queue if it was not there yet
if not(any(x[-1] == coords for x in Q.queue)):
Q.put([cost, child, parent, coords])
child += 1
# Updating the queue if the coordinate is found with lower cost
elif (any(x[-1] == coords and x[0] > cost for x in Q.queue)):
index = next((i for i, item in enumerate(Q.queue) if item[-1] == coords), None)
Q.queue[index][0] = cost
Q.queue[index][2]=parent
# Creating the end display
s=pygame.display.set_mode((width,height))
s.blit(surface,(0,0))
pygame.display.update()
# Showing the exploration
for value in pixels.values():
s.set_at(value[-1],(255,0,0))
pygame.display.update()
# Showing the optimal path if the goal was found
if(not (Q.empty())):
value = next(i for i in pixels if pixels[i][-1] == goal)
# Backtrack and generate the solution path
path=[]
while(pixels[value][1]!=-1):
path.append(pixels[value][-1])
value=pixels[value][1]
path.append(pixels[value][-1])
path.reverse()
# Displaying the path
for walk in path:
s.set_at(walk,(0,0,0))
pygame.display.update()
# Printing the time used by the algorithm
print('Time:',end_time-start_time)
# SHowing the screen
running = True
pygame.time.wait(10000)
# Game loop
while running:
# For loop through the event queue
for event in pygame.event.get():
# Check for QUIT event
if event.type == pygame.QUIT:
pygame.quit()
running = False