-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvln_fig2_compare.py
executable file
·86 lines (64 loc) · 2.53 KB
/
vln_fig2_compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python3
# This file is part of SunlightDPD - a home for open source software
# related to the dissipative particle dynamics (DPD) simulation
# method.
# Based on an original code copyright (c) 2007 Lucian Anton.
# Modifications copyright (c) 2008, 2009 Andrey Vlasov.
# Additional modifications copyright (c) 2009-2017 Unilever UK Central
# Resources Ltd (Registered in England & Wales, Company No 29140;
# Registered Office: Unilever House, Blackfriars, London, EC4P 4BQ,
# UK).
# SunlightDPD is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
# SunlightDPD is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with SunlightDPD. If not, see <http://www.gnu.org/licenses/>.
# Compute log_10 activity in the infinite dilution limit for a binary
# fluid and compare to empirical fit 0.144 * Delta A, as in Fig 2 of
# Vishnyakov, Lee and Neimark, J. Phys. Chem. Lett. 4, 797 (2013).
from math import log
from oz import wizard as w
w.ncomp = 2 # two components
w.initialise()
w.rho[0] = 3.0
w.rho[1] = 0.0 # zero density (still works!)
# Warm up HNC by ramping the repulsion amplitude
Amin = 25.0
Amax = 106.5
npt = 50
for i in range(npt):
A = Amin + (Amax-Amin)*i/(npt-1.0)
w.arep[0,0] = w.arep[0,1] = w.arep[1,1] = A
w.dpd_potential(1)
w.hnc_solve()
print("%f\t%f\t%f\t%g" % (A, w.muex[0], w.muex[1], w.error))
# Now ramp the extra repulsion amplitude
dAmin = -5.0
dAmax = 20.0
npt = 11
x = [0.0 for i in range(npt)]
y = [0.0 for i in range(npt)]
for i in range(npt):
x[i] = dA = dAmin + (dAmax-dAmin)*i/(npt-1.0)
w.arep[0,1] = A + dA
w.dpd_potential(1)
w.hnc_solve()
y[i] = (w.muex[1] - w.muex[0]) / log(10.0) # ie log_10(gamma)
print("%f\t%f\t%f\t%g" % (dA, w.muex[0], w.muex[1], w.error))
xx = [x[0], x[-1]] # first and last elements
yy = [0.144*x for x in xx] # straight line slope 0.144
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
plt.plot(x, y, label='HNC')
plt.plot(xx, yy, '--', label='0.144 $\\Delta a$')
plt.xlabel('$\\Delta a$')
plt.ylabel('$log_{10}\\gamma$')
plt.legend(loc='lower right')
ax.axhline(y=0, color='k')
ax.axvline(x=0, color='k')
plt.show()