-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathattard_fig1_compare.py
executable file
·136 lines (91 loc) · 4.04 KB
/
attard_fig1_compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# This file includes unicode characters
# This file is part of SunlightDPD - a home for open source software
# related to the dissipative particle dynamics (DPD) simulation
# method.
# Copyright (c) 2009-2019 Unilever UK Central Resources Ltd
# (Registered in England & Wales, Company No 29140; Registered Office:
# Unilever House, Blackfriars, London, EC4P 4BQ, UK). Additional
# modifications copyright (c) 2020-2024 Patrick B Warren
# <[email protected]> and STFC.
# SunlightDPD is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
# SunlightDPD is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with SunlightDPD. If not, see <http://www.gnu.org/licenses/>.
# Reproduce Fig 1a in Attard, Phys. Rev. E 48, 3604-21 (1993).
# This figure plots the total correlation functions for the RPM model
# of an electrolyte at 0.5 M, 2 M, and 5 M, with ion diameter 0.5 nm,
# in water with ε_r = 78.5 ant T = 300 K.
# Updated July 2024 to use the new oz_aux module.
import oz_aux
import argparse
import numpy as np
import matplotlib.pyplot as plt
from oz import wizard
from numpy import pi as π
grid = oz_aux.Grid(wizard, ncomp=2, ng=2**14, deltar=1e-3) # or 2*16 and 5e-4
# fundamental quantities in SI units
e = 1.602e-19 # charge on electron
ε0 = 8.854e-12 # permittivity of vacuum
kB = 1.38e-23 # Boltzmann constant
NA = 6.022e23 # Avogadro constant
Å = 1e-10 # in m, used for conversions
# solvent (water) parameters
T = 300 # temperature
εr = 78.5 # relative permittivity
# Bjerrum length (in m)
lb = e**2 / (4*π*εr*ε0*kB*T)
# solute (electrolyte) parameters
d = 5 * Å # ion diameter
concs = [0.5, 2, 5] # Molar units
print('Bjerrum length = %g Å = %g d, T* = %g' % (lb/Å, lb/d, d/lb))
# We use the diameter d as a base length unit
model = oz_aux.restricted_primitive_model(grid, lb / d)
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.set_xlim([5, 20]) # horizontal axis will be in Å
ax1.set_xticks([5, 10, 15, 20])
ax1.set_xlabel('r (Å)')
ax1.set_ylim([-0.5, 0.5])
ax1.set_yticks(np.around((np.arange(0, 11)*0.1-0.5), decimals=1).tolist())
ax1.set_title('h(r)')
ax2.set_xlim([5, 50]) # horizontal axis will be in Å
ax2.set_xticks(list(range(5, 55, 5)))
ax2.set_xlabel('r (Å)')
ax2.set_ylim([-8, 1])
ax2.set_yticks(list(range(-8, 2, 1)))
ax2.set_title('log10 h(r)')
imin = int(1.0 / grid.deltar)
styles = ['k-', 'r--', 'b:']
for i, (conc, style) in enumerate(zip(concs, styles)):
# Conversion molar concentration to molecular density
# ρ = (c/M) * 10^3 * N_A where the 10^3 comes
# from the number of litres in 1 m^3.
ρd3 = conc * 1e3 * NA * d**3
soln = oz_aux.solve(model, np.array([ρd3, ρd3]), 'HNC')
if wizard.return_code: exit()
print('conc = %5.1f M \tρ*d^3 = %8.5f \tϕ = %8.5f \tpress = %8.5f \t%s error = %g' %
(conc, ρd3, π*ρd3/6, soln.press, soln.closure, soln.error))
imax = int(4.0 / grid.deltar)
ax1.plot(grid.r[imin:imax] * d / Å, soln.hr[imin:imax, 0, 0], style)
ax1.plot(grid.r[imin:imax] * d / Å, soln.hr[imin:imax, 0, 1], style)
# In Attard's figure the line for 0.5 M is surely h_{+-}
imax = int(10.0 / grid.deltar)
if i == 0:
h = soln.hr[imin:imax, 0, 1]
else:
h = soln.hr[imin:imax, 0, 0]
h[h < 0] = 1e-20 # chop off negative regions
ax2.plot(grid.r[imin:imax] * d / Å, np.log10(h), style)
# The commented out variant plots r h for both ++ and +- functions
# for j, color in zip([0, 1], ['r', 'b']):
# h = grid.r[imin:imax] * soln.hr[imin:imax, 0, j]
# h[h < 0] = 1e-20
# plt.plot(grid.r[imin:imax] * d / Å, np.log10(h), color+style)
plt.show()