forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOpLSTM.py
437 lines (374 loc) · 14.3 KB
/
OpLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import theano
import theano.gradient
import theano.tensor as T
import theano.printing
import theano.gof
from theano.sandbox.cuda.basic_ops import (as_cuda_ndarray_variable,
gpu_contiguous)
from theano.gof.opt import OpSub
from theano.compile import optdb
import os
class LSTMOpGrad(theano.sandbox.cuda.GpuOp):
def __init__(self, inplace):
self.inplace = inplace
if inplace:
#all outputs operate inplace on inputs 4 and 6 (which are DY and H)
#but when the input is marked multiple times, we get an error
#so we only mark that output 0 destroys inputs 4 and 6
#anyway theano knows that inputs 4 and 6 will be destroyed, so it should be OK
#TODO
self.destroy_map = {0: [4], 1: [6]}
def __eq__(self, other):
return type(self) == type(other) and self.inplace == other.inplace
def __str__(self):
if self.inplace:
return '%s{inplace}' % self.__class__.__name__
else:
return '%s{no_inplace}' % self.__class__.__name__
def __hash__(self):
return hash(type(self)) ^ hash(self.inplace)
def make_node(self, V_h, c, idx, Dd, DY, Y, H):
V_h = gpu_contiguous(as_cuda_ndarray_variable(V_h))
c = gpu_contiguous(as_cuda_ndarray_variable(c))
DY = gpu_contiguous(as_cuda_ndarray_variable(DY))
idx = gpu_contiguous(as_cuda_ndarray_variable(T.cast(idx,'float32')))
Dd = gpu_contiguous(as_cuda_ndarray_variable(Dd))
assert V_h.dtype == "float32"
assert DY.dtype == 'float32'
assert Y.dtype == 'float32'
assert H.dtype == 'float32'
assert c.dtype == 'float32'
assert V_h.ndim == 2
assert DY.ndim == 3
assert Y.ndim == 3
assert H.ndim == 3
assert c.ndim == 2
assert idx.ndim == 2
return theano.Apply(self, [V_h, c, idx, Dd, DY, Y, H], [H.type(), V_h.type(), c.type()])
def infer_shape(self, node, input_shapes):
V_hs, cs, idxs, Dds, DYs, Ys, Hs = input_shapes
return [Hs, V_hs, cs]
def c_support_code(self):
crnn_path = os.path.dirname(__file__)
with open(crnn_path + "/c_support_code_mdlstm.cpp") as f:
return f.read()
def c_code(self, node, name, input_names, output_names, sub):
V_h, c, i, Dd, DY, Y, H = input_names
DZ, DV_h, Dc = output_names
fail = sub['fail']
inplace = "true" if self.inplace else "false"
return """
// std::cout << "LSTMOpGrad called" << std::endl;
if(!%(inplace)s)
{
//std::cout << "warning, inplace optimization failed, not working inplace" << std::endl;
}
if(%(DZ)s || %(DV_h)s || %(Dc)s)
{
//printf("output storage already exists\\n");
//TODO check if we can reuse it
Py_XDECREF(%(DZ)s);
Py_XDECREF(%(DV_h)s);
Py_XDECREF(%(Dc)s);
}
CudaNdarray * epsilon = 0;
CudaNdarray * delta = 0;
if(%(inplace)s)
{
epsilon = %(DY)s;
delta = %(H)s;
Py_XINCREF(delta);
}
else
{
epsilon = (CudaNdarray *) CudaNdarray_Copy(%(DY)s);
delta = (CudaNdarray *) CudaNdarray_Copy(%(H)s);
}
const int * H_dim = CudaNdarray_HOST_DIMS(%(H)s);
int y = 0;
for(int x = H_dim[0]-1; x >= 0; --x)
{
//add recurrent
bool rightBorder = (x == H_dim[0]-1);
if(!rightBorder)
{
affine_y_x(y, x+1, delta, y, x, %(V_h)s, y, x, epsilon, false, true);
}
do_lstm_bwd(delta, epsilon, %(Y)s, %(Dd)s, %(c)s, y, x, rightBorder, %(i)s);
}
%(DV_h)s = CudaNdarray_uninitialized_like(%(V_h)s);
//DV_h = Y[0..end-1]^T * delta[1..end]
affine_global(%(Y)s, delta, %(DV_h)s, true, false, 1, 0.0f);
%(DZ)s = delta;
%(Dc)s = CudaNdarray_uninitialized_like(%(c)s);
const int * Y_dim = CudaNdarray_HOST_DIMS(%(Y)s);
cudaMemcpy(CudaNdarray_DEV_DATA(%(Dc)s), CudaNdarray_DEV_DATA(epsilon),
Y_dim[1]*Y_dim[2]*sizeof(float), cudaMemcpyDeviceToDevice);
if(!%(inplace)s)
{
Py_XDECREF(epsilon);
}
""" % locals()
#!!! change this when changing the code!
def c_code_cache_version(self):
return 1, 5
LSTMOpGradNoInplaceInstance = LSTMOpGrad(inplace=False)
LSTMOpGradInplaceInstance = LSTMOpGrad(inplace=True)
LSTMOpGradInplaceOpt = OpSub(LSTMOpGradNoInplaceInstance, LSTMOpGradInplaceInstance)
#hack to avoid being called twice
if not hasattr(optdb, 'LSTMOpGradInplaceOpt_registered'):
optdb.register('LSTMOpGradInplaceOpt', theano.gof.TopoOptimizer(LSTMOpGradInplaceOpt),
50.0, 'fast_run', 'inplace', 'gpuarray')
optdb.LSTMOpGradInplaceOpt_registered = True
#------------------------
class LSTMOp(theano.sandbox.cuda.GpuOp):
def __init__(self, inplace):
self.inplace = inplace
if inplace:
#all outputs operate inplace on input 0 (which is Z)
#but when the input is marked multiple times, we get an error
#so we only mark that output 0 destroys input 0
#anyway theano knows that input 0 will be destroyed, so it should be OK
#TODO
self.destroy_map = {0: [0]}
def __eq__(self, other):
return type(self) == type(other) and self.inplace == other.inplace
def __str__(self):
if self.inplace:
return '%s{inplace}' % self.__class__.__name__
else:
return '%s{no_inplace}' % self.__class__.__name__
def __hash__(self):
return hash(type(self)) ^ hash(self.inplace)
def make_node(self, Z, V_h, c, i):
"""
:param Z: {input,output,forget} gate + cell state. 3d (time,batch,dim*4)
:param V_h: recurrent matrix. 2d (dim,dim*4)
:param c: initial cell state. 2d (batch,dim)
:param i: index. 2d (time,batch) -> 0 or 1
"""
Z = gpu_contiguous(as_cuda_ndarray_variable(Z))
V_h = gpu_contiguous(as_cuda_ndarray_variable(V_h))
c = gpu_contiguous(as_cuda_ndarray_variable(c))
i = gpu_contiguous(as_cuda_ndarray_variable(T.cast(i,'float32')))
assert Z.dtype == "float32"
assert V_h.dtype == "float32"
assert c.dtype == 'float32'
assert c.ndim == 2
assert Z.ndim == 3
assert i.ndim == 2
assert V_h.ndim == 2
# results: output Y, (gates and cell state) H, (final cell state) d
return theano.Apply(self, [Z, V_h, c, i], [Z.type(), Z.type(), c.type()])
def c_support_code(self):
crnn_path = os.path.dirname(__file__)
with open(crnn_path + "/c_support_code_mdlstm.cpp") as f:
return f.read()
def c_code(self, node, name, input_names, output_names, sub):
Z, V_h, c, i = input_names
Y, H, d = output_names
fail = sub['fail']
inplace = "true" if self.inplace else "false"
return """
if(%(Y)s || %(H)s || %(d)s)
{
//printf("Y or H or d already exist\\n");
//TODO check if we can reuse it
Py_XDECREF(%(Y)s);
Py_XDECREF(%(H)s);
Py_XDECREF(%(d)s);
}
const int * Z_dim = CudaNdarray_HOST_DIMS(%(Z)s);
const int dims_Y[] = {Z_dim[0], Z_dim[1], Z_dim[2] / 4};
const int dims_H[] = {Z_dim[0], Z_dim[1], Z_dim[2]};
const int dims_d[] = {Z_dim[1], Z_dim[2] / 4};
int size_d = Z_dim[1] * Z_dim[2] / 4;
%(Y)s = (CudaNdarray*) CudaNdarray_NewDims(3,dims_Y);
%(d)s = (CudaNdarray*) CudaNdarray_NewDims(2, dims_d);
if(%(inplace)s)
{
%(H)s = %(Z)s;
Py_INCREF(%(Z)s);
}
else
{
%(H)s = (CudaNdarray*) CudaNdarray_NewDims(3,dims_H);
cudaMemcpy(CudaNdarray_DEV_DATA(%(H)s), CudaNdarray_DEV_DATA(%(Z)s),
dims_H[0]*dims_H[1]*dims_H[2]*sizeof(float), cudaMemcpyDeviceToDevice);
}
int y = 0;
for(int x = 0; x < Z_dim[0]; ++x)
{
if(x > 0)
{
//H += Y[x-1]*V_h
affine_y_x(y, x-1, %(Y)s, y, x, %(V_h)s, y, x, %(H)s);
}
float * d_ptr = (x == Z_dim[0] - 1) ? CudaNdarray_DEV_DATA(%(d)s) : 0;
do_lstm(%(H)s, %(Y)s, %(c)s, d_ptr, y, x, %(i)s);
}
""" % locals()
def grad(self, inputs, output_grads):
Z, V_h, c, i = inputs
DY, DH, Dd = output_grads
Z_raw = Z.owner.inputs[0].owner.inputs[0]
#TODO!!!
V_h_raw = V_h.owner.inputs[0]
c_raw = c.owner.inputs[0].owner.inputs[0]
i_raw = i.owner.inputs[0].owner.inputs[0]
#we have to make sure that this in only computed once!
#for this we have to extract the raw variables before conversion to continuous gpu array
#so that theano can merge the nodes
Y, H, d = LSTMOpInstance(Z_raw, V_h_raw, c_raw, i_raw)
if isinstance(DY.type, theano.gradient.DisconnectedType):
DY = T.zeros_like(Z)
if isinstance(Dd.type, theano.gradient.DisconnectedType):
Dd = T.zeros_like(c)
DZ, DV_h, Dc = LSTMOpGradNoInplaceInstance(V_h, c, i, Dd, DY, Y, H)
Di = theano.gradient.grad_undefined(self, 3, inputs[3], 'cannot diff w.r.t. index')
return [DZ, DV_h, Dc, Di]
def infer_shape(self, node, input_shapes):
Zs, V_hs, cs, idxs = input_shapes
Y_shape = (Zs[0], Zs[1], Zs[2] // 4)
H_shape = (Zs[0], Zs[1], Zs[2])
d_shape = (Zs[1], Zs[2] // 4)
return [Y_shape, H_shape, d_shape]
#!!! change this when changing the code!
def c_code_cache_version(self):
return 1, 6
LSTMOpInstance = LSTMOp(inplace=False)
LSTMOpInplaceInstance = LSTMOp(inplace=True)
LSTMOpInplaceOpt = OpSub(LSTMOpInstance, LSTMOpInplaceInstance)
#hack to avoid begin called twice
if not hasattr(optdb, 'LSTMOpInplaceOpt_registered'):
optdb.register('LSTMOpInplaceOpt', theano.gof.TopoOptimizer(LSTMOpInplaceOpt),
50.0, 'fast_run', 'inplace', 'gpuarray')
optdb.LSTMOpInplaceOpt_registered = True
class LSTMSOp(theano.sandbox.cuda.GpuOp):
def __init__(self, inplace):
self.inplace = inplace
if inplace:
#all outputs operate inplace on input 0 (which is Z)
#but when the input is marked multiple times, we get an error
#so we only mark that output 0 destroys input 0
#anyway theano knows that input 0 will be destroyed, so it should be OK
#TODO
self.destroy_map = {0: [0]}
def __eq__(self, other):
return type(self) == type(other) and self.inplace == other.inplace
def __str__(self):
if self.inplace:
return '%s{inplace}' % self.__class__.__name__
else:
return '%s{no_inplace}' % self.__class__.__name__
def __hash__(self):
return hash(type(self)) ^ hash(self.inplace)
def make_node(self, Z, V_h, c, i, att):
"""
:param Z: {input,output,forget} gate + cell state. 3d (time,batch,dim*4)
:param V_h: recurrent matrix. 2d (dim,dim*4)
:param c: initial cell state. 2d (batch,dim)
:param i: index. 2d (time,batch) -> 0 or 1
:param att: attention from inverted alignment layer
"""
Z = gpu_contiguous(as_cuda_ndarray_variable(Z))
V_h = gpu_contiguous(as_cuda_ndarray_variable(V_h))
c = gpu_contiguous(as_cuda_ndarray_variable(c))
i = gpu_contiguous(as_cuda_ndarray_variable(T.cast(i,'float32')))
att = gpu_contiguous(as_cuda_ndarray_variable(T.cast(att,'float32')))
assert Z.dtype == "float32"
assert V_h.dtype == "float32"
assert c.dtype == 'float32'
assert c.ndim == 2
assert Z.ndim == 3
assert i.ndim == 2
assert V_h.ndim == 2
assert att.ndim == 2
# results: output Y, (gates and cell state) H, (final cell state) d
return theano.Apply(self, [Z, V_h, c, i, att], [Z.type(), Z.type(), c.type()])
def c_support_code(self):
crnn_path = os.path.dirname(__file__)
with open(crnn_path + "/c_support_code_mdlstm.cpp") as f:
return f.read()
def c_code(self, node, name, input_names, output_names, sub):
Z, V_h, c, i, att = input_names
Y, H, d = output_names
fail = sub['fail']
inplace = "true" if self.inplace else "false"
return """
if(%(Y)s || %(H)s || %(d)s)
{
//printf("Y or H or d already exist\\n");
//TODO check if we can reuse it
Py_XDECREF(%(Y)s);
Py_XDECREF(%(H)s);
Py_XDECREF(%(d)s);
}
const int * Z_dim = CudaNdarray_HOST_DIMS(%(Z)s);
const int dims_Y[] = {Z_dim[0], Z_dim[1], Z_dim[2] / 4};
const int dims_H[] = {Z_dim[0], Z_dim[1], Z_dim[2]};
const int dims_d[] = {Z_dim[1], Z_dim[2] / 4};
int size_d = Z_dim[1] * Z_dim[2] / 4;
%(Y)s = (CudaNdarray*) CudaNdarray_NewDims(3,dims_Y);
%(d)s = (CudaNdarray*) CudaNdarray_NewDims(2, dims_d);
if(%(inplace)s)
{
%(H)s = %(Z)s;
Py_INCREF(%(Z)s);
}
else
{
%(H)s = (CudaNdarray*) CudaNdarray_NewDims(3,dims_H);
cudaMemcpy(CudaNdarray_DEV_DATA(%(H)s), CudaNdarray_DEV_DATA(%(Z)s),
dims_H[0]*dims_H[1]*dims_H[2]*sizeof(float), cudaMemcpyDeviceToDevice);
}
int y = 0;
for(int x = 0; x < Z_dim[0]; ++x)
{
if(x > 0)
{
//H += Y[x-1]*V_h
affine_y_x(y, x-1, %(Y)s, y, x, %(V_h)s, y, x, %(H)s);
}
float * d_ptr = (x == Z_dim[0] - 1) ? CudaNdarray_DEV_DATA(%(d)s) : 0;
do_lstms(%(H)s, %(Y)s, %(c)s, d_ptr, y, x, %(i)s, %(att)s);
}
""" % locals()
def grad(self, inputs, output_grads):
Z, V_h, c, i, att = inputs
DY, DH, Dd = output_grads
Z_raw = Z.owner.inputs[0].owner.inputs[0]
#TODO!!!
V_h_raw = V_h.owner.inputs[0]
c_raw = c.owner.inputs[0].owner.inputs[0]
i_raw = i.owner.inputs[0].owner.inputs[0]
att_raw = att.owner.inputs[0].owner.inputs[0]
#we have to make sure that this in only computed once!
#for this we have to extract the raw variables before conversion to continuous gpu array
#so that theano can merge the nodes
Y, H, d = LSTMSOpInstance(Z_raw, V_h_raw, c_raw, i_raw, att_raw)
if isinstance(DY.type, theano.gradient.DisconnectedType):
DY = T.zeros_like(Z)
if isinstance(Dd.type, theano.gradient.DisconnectedType):
Dd = T.zeros_like(c)
DZ, DV_h, Dc = LSTMOpGradNoInplaceInstance(V_h, c, i, Dd, DY, Y, H)
Di = theano.gradient.grad_undefined(self, 3, inputs[3], 'cannot diff w.r.t. index')
Datt = theano.gradient.grad_undefined(self, 4, inputs[4], 'cannot diff w.r.t. index')
return [DZ, DV_h, Dc, Di, Datt]
def infer_shape(self, node, input_shapes):
Zs, V_hs, cs, idxs, atts = input_shapes
Y_shape = (Zs[0], Zs[1], Zs[2] / 4)
H_shape = (Zs[0], Zs[1], Zs[2])
d_shape = (Zs[1], Zs[2] / 4)
return [Y_shape, H_shape, d_shape]
#!!! change this when changing the code!
def c_code_cache_version(self):
return 1,7.1
LSTMSOpInstance = LSTMSOp(inplace=False)
LSTMSOpInplaceInstance = LSTMSOp(inplace=True)
LSTMSOpInplaceOpt = OpSub(LSTMSOpInstance, LSTMSOpInplaceInstance)
#hack to avoid begin called twice
if not hasattr(optdb, 'LSTMSOpInplaceOpt_registered'):
optdb.register('LSTMSOpInplaceOpt', theano.gof.TopoOptimizer(LSTMSOpInplaceOpt),
50.0, 'fast_run', 'inplace', 'gpuarray')
optdb.LSTMSOpInplaceOpt_registered = True