forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLearningRateControl.py
602 lines (545 loc) · 22.3 KB
/
LearningRateControl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
from __future__ import print_function
import os
from Util import betterRepr, simpleObjRepr, ObjAsDict, unicode
from Log import log
import numpy
class LearningRateControl(object):
need_error_info = True
class EpochData:
def __init__(self, learningRate, error=None):
"""
:type learningRate: float
:type error: dict[str,float] | None
"""
self.learningRate = learningRate
if isinstance(error, float): # Old format.
error = {"old_format_score": error}
if error is None:
error = {}
self.error = error
__repr__ = simpleObjRepr
@classmethod
def load_initial_kwargs_from_config(cls, config):
"""
:type config: Config.Config
:rtype: dict[str]
"""
return {
"defaultLearningRate": config.float('learning_rate', 1.0),
"minLearningRate": config.float('min_learning_rate', 0.0),
"defaultLearningRates": config.typed_value('learning_rates') or config.float_list('learning_rates'),
"errorMeasureKey": config.typed_value('learning_rate_control_error_measure')
or config.value('learning_rate_control_error_measure', None),
"relativeErrorAlsoRelativeToLearningRate": config.bool('learning_rate_control_relative_error_relative_lr', False),
"minNumEpochsPerNewLearningRate": config.int("learning_rate_control_min_num_epochs_per_new_lr", 0),
"filename": config.value('learning_rate_file', None),
}
@classmethod
def load_initial_from_config(cls, config):
"""
:type config: Config.Config
:rtype: LearningRateControl
"""
kwargs = cls.load_initial_kwargs_from_config(config)
return cls(**kwargs)
def __init__(self, defaultLearningRate, minLearningRate=0.0, defaultLearningRates=None,
errorMeasureKey=None,
relativeErrorAlsoRelativeToLearningRate=False,
minNumEpochsPerNewLearningRate=0,
filename=None):
"""
:param float defaultLearningRate: default learning rate. usually for epoch 1
:param list[float] | dict[int,float] defaultLearningRates: learning rates
:param str|list[str]|None errorMeasureKey: for getEpochErrorValue() the selector for EpochData.error which is a dict
:param int minNumEpochsPerNewLearningRate: if the lr was recently updated, use it for at least N epochs
:param str filename: load from and save to file
"""
self.epochData = {} # type: dict[int,LearningRateControl.EpochData]
self.defaultLearningRate = defaultLearningRate
self.minLearningRate = minLearningRate
if defaultLearningRates:
if isinstance(defaultLearningRates, list):
defaultLearningRates = {i + 1: v for (i, v) in enumerate(defaultLearningRates)}
if isinstance(defaultLearningRates, (str, unicode)):
defaultLearningRates = eval(defaultLearningRates)
assert isinstance(defaultLearningRates, dict)
for epoch, v in defaultLearningRates.items():
self.setDefaultLearningRateForEpoch(epoch, v)
self.defaultLearningRates = defaultLearningRates
self.errorMeasureKey = errorMeasureKey
self.relativeErrorAlsoRelativeToLearningRate = relativeErrorAlsoRelativeToLearningRate
self.minNumEpochsPerNewLearningRate = minNumEpochsPerNewLearningRate
self.filename = filename
if filename:
if os.path.exists(filename):
print("Learning-rate-control: loading file %s" % filename, file=log.v4)
self.load()
else:
print("Learning-rate-control: file %s does not exist yet" % filename, file=log.v4)
else:
print("Learning-rate-control: no file specified, not saving history (no proper restart possible)", file=log.v4)
__repr__ = simpleObjRepr
def __str__(self):
return "%r, epoch data: %s, error key: %s" % \
(self, ", ".join(["%i: %s" % (epoch, self.epochData[epoch])
for epoch in sorted(self.epochData.keys())]),
self.getErrorKey(epoch=1))
def calcLearningRateForEpoch(self, epoch):
"""
:type epoch: int
:returns learning rate
:rtype: float
"""
raise NotImplementedError
def calcNewLearnignRateForEpoch(self, epoch):
if self.minNumEpochsPerNewLearningRate > 1:
lastLrs = [self.epochData[e].learningRate
for e in self._lastEpochsForEpoch(epoch, numEpochs=self.minNumEpochsPerNewLearningRate)]
if len(set(lastLrs)) >= 2:
return lastLrs[-1]
learningRate = self.calcLearningRateForEpoch(epoch)
if learningRate < self.minLearningRate:
return self.minLearningRate
return learningRate
def _lastEpochsForEpoch(self, epoch, numEpochs):
lastEpochs = sorted([e for e in self.epochData.keys() if e < epoch])
if not lastEpochs:
return []
lastEpochs = lastEpochs[-numEpochs:]
return lastEpochs
def getLearningRateForEpoch(self, epoch):
"""
:type epoch: int
:rtype: float
"""
assert epoch >= 1
if epoch in self.epochData: return self.epochData[epoch].learningRate
learningRate = self.calcNewLearnignRateForEpoch(epoch)
self.setDefaultLearningRateForEpoch(epoch, learningRate)
return learningRate
def setDefaultLearningRateForEpoch(self, epoch, learningRate):
"""
:type epoch: int
:type learningRate: float
"""
if epoch in self.epochData:
if not self.epochData[epoch].learningRate:
self.epochData[epoch].learningRate = learningRate
else:
self.epochData[epoch] = self.EpochData(learningRate)
def getLastEpoch(self, epoch):
epochs = sorted([e for e in self.epochData.keys() if e < epoch])
if not epochs:
return None
return epochs[-1]
def getMostRecentLearningRate(self, epoch, excludeCurrent=True):
for e, data in reversed(sorted(self.epochData.items())):
if e > epoch: continue
if excludeCurrent and e == epoch: continue
if data.learningRate is None: continue
return data.learningRate
return self.defaultLearningRate
def calcRelativeError(self, oldEpoch, newEpoch):
oldKey, oldError = self.getEpochErrorKeyValue(oldEpoch)
newKey, newError = self.getEpochErrorKeyValue(newEpoch)
if oldError is None or newError is None:
return None
if oldKey != newKey:
return None
relativeError = (newError - oldError) / abs(newError)
if self.relativeErrorAlsoRelativeToLearningRate:
learningRate = self.getMostRecentLearningRate(newEpoch, excludeCurrent=False)
# If the learning rate is lower than the initial learning rate,
# the relative error is also expected to be lower, so correct for that here.
relativeError /= learningRate / self.defaultLearningRate
return relativeError
def setEpochError(self, epoch, error):
"""
:type epoch: int
:type error: dict[str,float|dict[str,float]]
"""
if epoch not in self.epochData:
print("Learning rate not set for epoch %i. Assuming default." % epoch, file=log.v4)
self.getLearningRateForEpoch(epoch) # This will set it.
assert isinstance(error, dict)
error = error.copy()
for k, v in list(error.items()):
if isinstance(v, dict): # like error = {"dev_score": {"cost:output1": .., "cost:output2": ...}, ...}
del error[k]
if len(v) == 1:
error[k] = list(v.values())[0]
continue
for k1, v1 in v.items():
if ":" in k1: k1 = k1[k1.index(":") + 1:]
error[k + "_" + k1] = v1
for v in error.values():
assert isinstance(v, float)
self.epochData[epoch].error.update(error)
if epoch == 1:
print("Learning-rate-control: error key %r from %r" % (self.getErrorKey(epoch), error), file=log.v4)
def getErrorKey(self, epoch):
if epoch not in self.epochData:
if isinstance(self.errorMeasureKey, list):
return self.errorMeasureKey[0]
assert isinstance(self.errorMeasureKey, (str, type(None)))
return self.errorMeasureKey
epoch_data = self.epochData[epoch]
if not epoch_data.error:
return None
if len(epoch_data.error) == 1 and "old_format_score" in epoch_data.error:
return "old_format_score"
keys = []
if isinstance(self.errorMeasureKey, list):
for key in self.errorMeasureKey:
keys += [key, key + "_output"] # for multiple outputs, try default output
elif isinstance(self.errorMeasureKey, str):
keys += [self.errorMeasureKey, self.errorMeasureKey + "_output"]
else:
assert self.errorMeasureKey is None
keys += ["dev_score", "dev_score_output"]
for key in keys:
if key in epoch_data.error:
return key
for key in sorted(epoch_data.error.keys()):
if key.startswith("dev_"):
return key
for key in ["train_score", "train_score_output"]:
if key in epoch_data.error:
return key
return min(epoch_data.error.keys())
def getEpochErrorDict(self, epoch):
if epoch not in self.epochData:
return {}
return self.epochData[epoch].error
def getEpochErrorValue(self, epoch):
error = self.getEpochErrorDict(epoch)
if not error:
return None
key = self.getErrorKey(epoch)
assert key
assert key in error, "%r not in %r. fix %r in config. set it to %r or so." % \
(key, error, 'learning_rate_control_error_measure', 'dev_error')
return error[key]
def getEpochErrorKeyValue(self, epoch):
error = self.getEpochErrorDict(epoch)
if not error:
return None, None
key = self.getErrorKey(epoch)
assert key
assert key in error, "%r not in %r. fix %r in config. set it to %r or so." % \
(key, error, 'learning_rate_control_error_measure', 'dev_error')
return key, error[key]
def getLastBestEpoch(self, last_epoch, first_epoch=1, filter_score=float("inf"), only_last_n=-1, min_score_dist=0.0):
"""
:param int first_epoch: will check all epochs >= first_epoch
:param int last_epoch: inclusive. will check all epochs <= last_epoch
:param float filter_score: all epochs which values over this score are not considered
:param int only_last_n: if set (>=1), from the resulting list, we consider only the last only_last_n
:param float min_score_dist: filter out epochs where the diff to the most recent is not big enough
:return: the last best epoch. to get the details then, you might want to use getEpochErrorDict.
:rtype: int|None
"""
if first_epoch > last_epoch:
return None
values = [(self.getEpochErrorKeyValue(ep), ep) for ep in range(first_epoch, last_epoch + 1)]
# Note that the order of the checks here is a bit arbitrary but I had some thoughts on it.
# Changing the order will also slightly change the behavior, so be sure it make sense.
values = [((key, v), ep) for ((key, v), ep) in values if v is not None]
if not values:
return None
last_key, latest_score = values[-1][0]
values = [(v, ep) for ((key, v), ep) in values if key == last_key] # only same key
values = [(v, ep) for (v, ep) in values if v <= filter_score]
if not values:
return None
if only_last_n >= 1:
values = values[-only_last_n:]
values = [(v, ep) for (v, ep) in values if v + min_score_dist < latest_score]
if not values:
return None
return min(values)[1]
def save(self):
if not self.filename: return
# First write to a temp-file, to be sure that the write happens without errors.
# Otherwise, it could happen that we delete the old existing file, then
# some error happens (e.g. disk quota), and we loose the newbob data.
# Loosing that data is very bad because it basically means that we have to redo all the training.
tmp_filename = self.filename + ".new_tmp"
f = open(tmp_filename, "w")
f.write(betterRepr(self.epochData))
f.write("\n")
f.close()
os.rename(tmp_filename, self.filename)
def load(self):
s = open(self.filename).read()
self.epochData = eval(s, {"nan": float("nan"), "inf": float("inf")}, ObjAsDict(self))
class ConstantLearningRate(LearningRateControl):
need_error_info = False
def calcLearningRateForEpoch(self, epoch):
"""
Dummy constant learning rate. Returns initial learning rate.
:type epoch: int
:returns learning rate
:rtype: float
"""
while True:
lastEpoch = self.getLastEpoch(epoch)
if lastEpoch is None:
return self.defaultLearningRate
learningRate = self.epochData[lastEpoch].learningRate
if learningRate is None:
epoch = lastEpoch
continue
return learningRate
class NewbobRelative(LearningRateControl):
@classmethod
def load_initial_kwargs_from_config(cls, config):
"""
:type config: Config.Config
:rtype: dict[str]
"""
kwargs = super(NewbobRelative, cls).load_initial_kwargs_from_config(config)
kwargs.update({
"relativeErrorThreshold": config.float('newbob_relative_error_threshold', -0.01),
"learningRateDecayFactor": config.float('newbob_learning_rate_decay', 0.5)})
return kwargs
def __init__(self, relativeErrorThreshold, learningRateDecayFactor, **kwargs):
"""
:param float defaultLearningRate: learning rate for epoch 1+2
:type relativeErrorThreshold: float
:type learningRateDecayFactor: float
:type filename: str
"""
super(NewbobRelative, self).__init__(**kwargs)
self.relativeErrorThreshold = relativeErrorThreshold
self.learningRateDecayFactor = learningRateDecayFactor
def calcLearningRateForEpoch(self, epoch):
"""
Newbob+ on train data.
:type epoch: int
:returns learning rate
:rtype: float
"""
lastEpoch = self.getLastEpoch(epoch)
if lastEpoch is None:
return self.defaultLearningRate
learningRate = self.epochData[lastEpoch].learningRate
if learningRate is None:
return self.defaultLearningRate
last2Epoch = self.getLastEpoch(lastEpoch)
if last2Epoch is None:
return learningRate
relativeError = self.calcRelativeError(last2Epoch, lastEpoch)
if relativeError is None:
return learningRate
if relativeError > self.relativeErrorThreshold:
learningRate *= self.learningRateDecayFactor
return learningRate
class NewbobAbs(LearningRateControl):
@classmethod
def load_initial_kwargs_from_config(cls, config):
"""
:type config: Config.Config
:rtype: dict[str]
"""
kwargs = super(NewbobAbs, cls).load_initial_kwargs_from_config(config)
kwargs.update({
"errorThreshold": config.float('newbob_error_threshold', -0.01),
"learningRateDecayFactor": config.float('newbob_learning_rate_decay', 0.5)})
return kwargs
def __init__(self, errorThreshold, learningRateDecayFactor, **kwargs):
"""
:type errorThreshold: float
:type learningRateDecayFactor: float
"""
super(NewbobAbs, self).__init__(**kwargs)
self.errorThreshold = errorThreshold
self.learningRateDecayFactor = learningRateDecayFactor
def calcLearningRateForEpoch(self, epoch):
"""
Newbob+ on train data.
:type epoch: int
:returns learning rate
:rtype: float
"""
lastEpoch = self.getLastEpoch(epoch)
if lastEpoch is None:
return self.defaultLearningRate
learningRate = self.epochData[lastEpoch].learningRate
if learningRate is None:
return self.defaultLearningRate
last2Epoch = self.getLastEpoch(lastEpoch)
if last2Epoch is None:
return learningRate
oldKey, oldError = self.getEpochErrorKeyValue(last2Epoch)
newKey, newError = self.getEpochErrorKeyValue(lastEpoch)
if oldError is None or newError is None:
return learningRate
if oldKey != newKey:
return learningRate
errorDiff = newError - oldError
if errorDiff > self.errorThreshold:
learningRate *= self.learningRateDecayFactor
return learningRate
class NewbobMultiEpoch(LearningRateControl):
@classmethod
def load_initial_kwargs_from_config(cls, config):
"""
:type config: Config.Config
:rtype: dict[str]
"""
kwargs = super(NewbobMultiEpoch, cls).load_initial_kwargs_from_config(config)
kwargs.update({
"numEpochs": config.int("newbob_multi_num_epochs", 5),
"updateInterval": config.int("newbob_multi_update_interval", config.int("newbob_multi_num_epochs", 5)),
"relativeErrorThreshold": config.float('newbob_relative_error_threshold', -0.01),
"learningRateDecayFactor": config.float('newbob_learning_rate_decay', 0.5),
"learningRateGrowthFactor": config.float('newbob_learning_rate_growth', 1.0),
})
return kwargs
def __init__(self, numEpochs, updateInterval,
relativeErrorThreshold, learningRateDecayFactor, learningRateGrowthFactor=1.0, **kwargs):
"""
:param float defaultLearningRate: learning rate for epoch 1+2
:param int numEpochs:
:param int updateInterval:
:param float relativeErrorThreshold:
:param float learningRateDecayFactor:
:param int filename:
"""
super(NewbobMultiEpoch, self).__init__(**kwargs)
self.numEpochs = numEpochs
assert self.numEpochs >= 1
self.updateInterval = updateInterval
assert self.updateInterval >= 1
self.relativeErrorThreshold = relativeErrorThreshold
self.learningRateDecayFactor = learningRateDecayFactor
self.learningRateGrowthFactor = learningRateGrowthFactor
def _calcMeanRelativeError(self, epochs):
"""
:param list[int] epochs:
:return: mean of relative errors
:rtype: float|None
"""
assert len(epochs) >= 2
errors = [self.calcRelativeError(epochs[i], epochs[i + 1]) for i in range(len(epochs) - 1)]
if any([e is None for e in errors]):
return None
return numpy.mean(errors)
def _calcRecentMeanRelativeError(self, epoch):
"""
:param int epoch:
:return: recent mean of relative errors
:rtype: float|None
"""
# Take one more than numEpochs because we are looking at the diffs.
lastEpochs = self._lastEpochsForEpoch(epoch, numEpochs=self.numEpochs + 1)
if not lastEpochs:
return None
# We could also use the self.numEpochs limit here. But maybe this is better.
if len(lastEpochs) <= 1:
return None
return self._calcMeanRelativeError(lastEpochs)
def calcLearningRateForEpoch(self, epoch):
"""
Newbob+ on train data.
:type epoch: int
:returns learning rate
:rtype: float
"""
learningRate = self.getMostRecentLearningRate(epoch)
# We start counting epochs at 1.
if self.updateInterval > 1 and epoch % self.updateInterval != 1:
return learningRate
meanRelativeError = self._calcRecentMeanRelativeError(epoch)
if meanRelativeError is None:
return learningRate
if meanRelativeError > self.relativeErrorThreshold:
learningRate *= self.learningRateDecayFactor
else:
learningRate *= self.learningRateGrowthFactor
return learningRate
def learningRateControlType(typeName):
if typeName == "constant":
return ConstantLearningRate
elif typeName in ("newbob", "newbob_rel", "newbob_relative"): # Old setups expect the relative version.
return NewbobRelative
elif typeName == "newbob_abs":
return NewbobAbs
elif typeName == "newbob_multi_epoch":
return NewbobMultiEpoch
else:
assert False, "unknown learning-rate-control type %s" % typeName
def loadLearningRateControlFromConfig(config):
"""
:type config: Config.Config
:rtype: LearningRateControl
"""
controlType = config.value("learning_rate_control", "constant")
cls = learningRateControlType(controlType)
return cls.load_initial_from_config(config)
def demo():
import better_exchook
better_exchook.install()
import rnn
import sys
if len(sys.argv) <= 1:
print("usage: python %s [config] [other options] [++check_learning_rates 1]" % __file__)
print("example usage: python %s ++learning_rate_control newbob ++learning_rate_file newbob.data ++learning_rate 0.001" % __file__)
rnn.initConfig(commandLineOptions=sys.argv[1:])
rnn.config._hack_value_reading_debug()
rnn.config.update({"log": []})
rnn.initLog()
rnn.initBackendEngine()
check_lr = rnn.config.bool("check_learning_rates", False)
from Pretrain import pretrainFromConfig
pretrain = pretrainFromConfig(rnn.config)
first_non_pretrain_epoch = 1
pretrain_learning_rate = None
if pretrain:
first_non_pretrain_epoch = pretrain.get_train_num_epochs() + 1
log.initialize(verbosity=[5])
control = loadLearningRateControlFromConfig(rnn.config)
print("LearningRateControl: %r" % control)
if not control.epochData:
print("No epoch data so far.")
return
firstEpoch = min(control.epochData.keys())
if firstEpoch != 1:
print("Strange, first epoch from epoch data is %i." % firstEpoch)
print("Error key: %s from %r" % (control.getErrorKey(epoch=firstEpoch), control.epochData[firstEpoch].error))
if pretrain:
pretrain_learning_rate = rnn.config.float('pretrain_learning_rate', control.defaultLearningRate)
maxEpoch = max(control.epochData.keys())
for epoch in range(1, maxEpoch + 2): # all epochs [1..maxEpoch+1]
oldLearningRate = None
if epoch in control.epochData:
oldLearningRate = control.epochData[epoch].learningRate
if epoch < first_non_pretrain_epoch:
learningRate = pretrain_learning_rate
s = "Pretrain epoch %i, fixed learning rate: %s (was: %s)" % (epoch, learningRate, oldLearningRate)
elif first_non_pretrain_epoch > 1 and epoch == first_non_pretrain_epoch:
learningRate = control.defaultLearningRate
s = "First epoch after pretrain, epoch %i, fixed learning rate: %s (was %s)" % (epoch, learningRate, oldLearningRate)
else:
learningRate = control.calcNewLearnignRateForEpoch(epoch)
s = "Calculated learning rate for epoch %i: %s (was: %s)" % (epoch, learningRate, oldLearningRate)
if learningRate < control.minLearningRate:
learningRate = control.minLearningRate
s += ", clipped to %s" % learningRate
s += ", previous relative error: %s" % control.calcRelativeError(epoch - 2, epoch - 1)
if hasattr(control, "_calcRecentMeanRelativeError"):
s += ", previous mean relative error: %s" % control._calcRecentMeanRelativeError(epoch)
print(s)
if check_lr and oldLearningRate is not None:
if oldLearningRate != learningRate:
print("Learning rate is different in epoch %i!" % epoch)
sys.exit(1)
# Overwrite new learning rate so that the calculation for further learning rates stays consistent.
if epoch in control.epochData:
control.epochData[epoch].learningRate = learningRate
else:
control.epochData[epoch] = control.EpochData(learningRate=learningRate)
print("Finished, last stored epoch was %i." % maxEpoch)
if __name__ == "__main__":
demo()