-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathgenerate.py
75 lines (67 loc) · 2.48 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# -*- coding: utf-8 -*-
import sys
import textwrap
from backend import generate, load_model
try:
from alive_progress import alive_bar
except ImportError:
alive_bar = None
if __name__ == "__main__":
model_path = "models/古言.h5" # 模型路径
nums = 1 # 开头生成下文的数量
max_len = 512 # 最大长度
topp = 0.8 # 采样概率
batch_size = 32 # 批大小
# 开头,建议开头字数在50字到200字之间
text = """
白月耸了耸肩膀,无语。黎傲然不再说话,继续闭上眼睛养起神来。
马车慢慢的驶出了城,在城外宽阔的大道上前行着。
“咦?”凌言看着窗外越来越僻静的小路,觉察出了不对劲。
“怎么了?”白月不解的看着凌言。
“似乎方向不对啊。”凌言将头探出窗外,大声冲车夫道,“师傅,你是不是走错路了?”
车夫却丝毫不理会凌言的话,反而扬起鞭子抽了马一鞭子,将马车赶的更快了。
"""
output = "out.txt" # 输出文件名
# 加载模型
model = load_model(
model_path, None, "models/config-misaka.json", "models/vocab-misaka.txt"
)
# 生成
text = textwrap.dedent(text)
if alive_bar is not None:
elasped_total = max_len * (len(text) // 400 + 1) + 10
with alive_bar(total=elasped_total, title="Generating", dual_line=True) as bar:
outputs, time_consumed = generate(
model,
text,
nums,
max_len,
topp=topp,
batch_size=batch_size,
step_callback=lambda nums, _: (
bar.text(f"Remaining nums: {nums}"),
bar(),
),
)
while bar.current() < elasped_total:
bar()
else:
outputs, time_consumed = generate(
model,
text,
nums,
max_len,
topp=topp,
batch_size=batch_size,
step_callback=lambda nums, n: sys.stderr.write(
f"\r[ nums:{nums} length:{n}]"
),
)
sys.stderr.write(f"Finished in {time_consumed:.2f}s.\n")
# 输出
with open(output, "w", encoding="utf-8") as f:
for _ in range(nums):
f.write(textwrap.indent(text, "\t") + "\n")
for output in outputs:
f.write(textwrap.indent(output, "\t") + "\n")
f.write("\n" + "*" * 80 + "\n")