-
-
Notifications
You must be signed in to change notification settings - Fork 637
/
Copy pathdensenet_layer.py
executable file
·80 lines (63 loc) · 2.63 KB
/
densenet_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/bin/python
import tensorflow as tf
import layer
import speech_data
from speech_data import Source,Target
learning_rate = 0.001
training_iters = 300000
batch_size = 64
# BASELINE toy net
def simple_dense(net): # best with lr ~0.001
# type: (layer.net) -> None
# net.dense(hidden=200,depth=8,dropout=False) # BETTER!!
net.dense(400, activation=tf.nn.tanh)# 0.99 YAY
# net.denseNet(40, depth=4)
# net.classifier() # auto classes from labels
return
def alex(net): # kinda
# type: (layer.net) -> None
print("Building Alex-net")
net.reshape(shape=[-1, 64, 64, 1]) # Reshape input picture
# net.batchnorm()
net.conv([3, 3, 1, 64]) # 64 filters
net.conv([3, 3, 64, 128])
net.conv([3, 3, 128, 256])
net.conv([3, 3, 256, 512])
net.conv([3, 3, 512, 1024])
net.dense(1024,activation=tf.nn.relu)
net.dense(1024,activation=tf.nn.relu)
# Densely Connected Convolutional Networks https://arxiv.org/abs/1608.06993 # advanced ResNet
def denseConv(net):
# type: (layer.net) -> None
print("Building dense-net")
net.reshape(shape=[-1, 64, 64, 1]) # Reshape input picture
net.buildDenseConv(nBlocks=1) # increase nBlocks for real data
net.classifier() # auto classes from labels
def denseNet(net):
# type: (layer.net) -> None
print("Building dense-net")
net.reshape(shape=[-1, 64, 64, 1]) # Reshape input picture
net.fullDenseNet()
net.classifier() # auto classes from labels
train_digits=True
if train_digits:
width= height=64 # for pcm baby data
batch=speech_data.spectro_batch_generator(1000,target=speech_data.Target.digits)
classes=10 # digits
else:
width=512 # for spoken_words overkill data
classes=74 #
batch=word_batch=speech_data.spectro_batch_generator(10, width, source_data=Source.WORD_SPECTROS, target=Target.first_letter)
raise Exception("TODO")
X,Y=next(batch)
# CHOOSE MODEL ARCHITECTURE HERE:
# net = layer.net(simple_dense, data=batch, input_width=width, output_width=classes, learning_rate=0.01)
net = layer.net(simple_dense, data=batch, input_shape=(width,height), output_width=classes, learning_rate=0.01)
# net=layer.net(model=alex,input_shape=(width, height),output_width=10, learning_rate=learning_rate)
# net=layer.net(model=denseConv, input_shape=(width, height),output_width=10, learning_rate=learning_rate)
net.train(data=batch,batch_size=10,steps=500,dropout=0.6,display_step=1,test_step=1) # debug
# net.train(data=batch,batch_size=10,steps=5000,dropout=0.6,display_step=5,test_step=20) # test
# net.train(data=batch,batch_size=10,steps=5000,dropout=0.6,display_step=10,test_step=100) # run
# net.predict() # nil=random
# net.generate(3) # nil=random
print ("Now try switching between model architectures in line 68-71")