-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathutils.py
223 lines (155 loc) · 4.96 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import random
import cv2
import sys
import numpy as np
import h5py
import torch
from torch.autograd import Variable
from PIL import Image, ImageOps, ImageEnhance
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
def set_seed(seed):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def rand_float(lo, hi):
return np.random.rand() * (hi - lo) + lo
def rand_int(lo, hi):
return np.random.randint(lo, hi)
def calc_dis(a, b):
return np.sqrt((a[0] - b[0])**2 + (a[1] - b[1])**2)
def norm(x, p=2):
return np.power(np.sum(x ** p), 1. / p)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def to_var(tensor, use_gpu, requires_grad=False):
if use_gpu:
return Variable(torch.FloatTensor(tensor).cuda(), requires_grad=requires_grad)
else:
return Variable(torch.FloatTensor(tensor), requires_grad=requires_grad)
def to_np(x):
return x.detach().cpu().numpy()
'''
data utils
'''
def store_data(data_names, data, path):
hf = h5py.File(path, 'w')
for i in range(len(data_names)):
hf.create_dataset(data_names[i], data=data[i])
hf.close()
def load_data(data_names, path):
hf = h5py.File(path, 'r')
data = []
for i in range(len(data_names)):
d = np.array(hf.get(data_names[i]))
data.append(d)
hf.close()
return data
def combine_stat(stat_0, stat_1):
mean_0, std_0, n_0 = stat_0[:, 0], stat_0[:, 1], stat_0[:, 2]
mean_1, std_1, n_1 = stat_1[:, 0], stat_1[:, 1], stat_1[:, 2]
mean = (mean_0 * n_0 + mean_1 * n_1) / (n_0 + n_1)
std = np.sqrt(
(std_0 ** 2 * n_0 + std_1 ** 2 * n_1 + (mean_0 - mean) ** 2 * n_0 + (mean_1 - mean) ** 2 * n_1) / (n_0 + n_1))
n = n_0 + n_1
return np.stack([mean, std, n], axis=-1)
def init_stat(dim):
# mean, std, count
return np.zeros((dim, 3))
'''
image utils
'''
def resize(img, size, interpolation=Image.BILINEAR):
if isinstance(size, int):
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), interpolation)
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), interpolation)
else:
return img.resize(size[::-1], interpolation)
def crop(img, i, j, h, w):
return img.crop((j, i, j + w, i + h))
def adjust_brightness(img, brightness_factor):
enhancer = ImageEnhance.Brightness(img)
img = enhancer.enhance(brightness_factor)
return img
def adjust_contrast(img, contrast_factor):
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(contrast_factor)
return img
def adjust_saturation(img, saturation_factor):
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(saturation_factor)
return img
def adjust_hue(img, hue_factor):
if not(-0.5 <= hue_factor <= 0.5):
raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
input_mode = img.mode
if input_mode in {'L', '1', 'I', 'F'}:
return img
h, s, v = img.convert('HSV').split()
np_h = np.array(h, dtype=np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over='ignore'):
np_h += np.uint8(hue_factor * 255)
h = Image.fromarray(np_h, 'L')
img = Image.merge('HSV', (h, s, v)).convert(input_mode)
return img
def adjust_gamma(img, gamma, gain=1):
if gamma < 0:
raise ValueError('Gamma should be a non-negative real number')
input_mode = img.mode
img = img.convert('RGB')
gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
img = img.point(gamma_map) # use PIL's point-function to accelerate this part
img = img.convert(input_mode)
return img
'''
record utils
'''
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
class Tee(object):
def __init__(self, name, mode):
self.file = open(name, mode)
self.stdout = sys.stdout
sys.stdout = self
def __del__(self):
sys.stdout = self.stdout
self.file.close()
def write(self, data):
self.file.write(data)
self.stdout.write(data)
def flush(self):
self.file.flush()
def close(self):
self.__del__()
class AverageMeter(object):
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count