This repository has been archived by the owner on Jan 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_ms.py
635 lines (586 loc) · 22.7 KB
/
train_ms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
import argparse
import itertools
import json
import math
import os
import torch
import torch.distributed as dist
# from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
import tqdm
from torch import nn, optim
from torch.cuda.amp import GradScaler, autocast
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import commons
import models
import utils
from data_utils import (DistributedBucketSampler, TextAudioSpeakerCollate,
TextAudioSpeakerLoader)
from losses import discriminator_loss, feature_loss, generator_loss, kl_loss
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from models import (AVAILABLE_DURATION_DISCRIMINATOR_TYPES,
AVAILABLE_FLOW_TYPES,
DurationDiscriminatorV1, DurationDiscriminatorV2,
MultiPeriodDiscriminator, SynthesizerTrn)
from text.symbols import symbols
torch.backends.cudnn.benchmark = True
global_step = 0
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "6060"
hps = utils.get_hparams()
mp.spawn(
run,
nprocs=n_gpus,
args=(
n_gpus,
hps,
),
)
def run(rank, n_gpus, hps):
net_dur_disc = None
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
dist.init_process_group(
backend="nccl", init_method="env://", world_size=n_gpus, rank=rank
)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
if (
"use_mel_posterior_encoder" in hps.model.keys()
and hps.model.use_mel_posterior_encoder == True
):
print("Using mel posterior encoder for VITS3")
posterior_channels = 80 # vits3
hps.data.use_mel_posterior_encoder = True
else:
print("Using lin posterior encoder for VITS1")
posterior_channels = hps.data.filter_length // 2 + 1
hps.data.use_mel_posterior_encoder = False
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(
train_dataset,
num_workers=8,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler,
)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
eval_loader = DataLoader(
eval_dataset,
num_workers=8,
shuffle=False,
batch_size=hps.train.batch_size,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
# some of these flags are not being used in the code and directly set in hps json file.
# they are kept here for reference and prototyping.
if (
"use_transformer_flows" in hps.model.keys()
and hps.model.use_transformer_flows == True
):
use_transformer_flows = True
transformer_flow_type = hps.model.transformer_flow_type
print(f"Using transformer flows {transformer_flow_type} for VITS3")
assert (
transformer_flow_type in AVAILABLE_FLOW_TYPES
), f"transformer_flow_type must be one of {AVAILABLE_FLOW_TYPES}"
else:
print("Using normal flows for VITS1")
use_transformer_flows = False
if (
"use_spk_conditioned_encoder" in hps.model.keys()
and hps.model.use_spk_conditioned_encoder == True
):
if hps.data.n_speakers == 0:
raise ValueError(
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
)
use_spk_conditioned_encoder = True
else:
print("Using normal encoder for VITS1")
use_spk_conditioned_encoder = False
if (
"use_noise_scaled_mas" in hps.model.keys()
and hps.model.use_noise_scaled_mas == True
):
print("Using noise scaled MAS for VITS3")
use_noise_scaled_mas = True
mas_noise_scale_initial = 0.01
noise_scale_delta = 2e-6
else:
print("Using normal MAS for VITS1")
use_noise_scaled_mas = False
mas_noise_scale_initial = 0.0
noise_scale_delta = 0.0
if (
"use_duration_discriminator" in hps.model.keys()
and hps.model.use_duration_discriminator == True
):
# print("Using duration discriminator for VITS3")
use_duration_discriminator = True
# comment - choihkk
# add duration discriminator type here
# I think it would be a good idea to come up with a method to input this part accurately, like a hydra
duration_discriminator_type = getattr(
hps.model, "duration_discriminator_type", "dur_disc_1"
)
print(f"Using duration_discriminator {duration_discriminator_type} for VITS3")
assert (
duration_discriminator_type in AVAILABLE_DURATION_DISCRIMINATOR_TYPES
), f"duration_discriminator_type must be one of {AVAILABLE_DURATION_DISCRIMINATOR_TYPES}"
duration_discriminator_type = AVAILABLE_DURATION_DISCRIMINATOR_TYPES
if duration_discriminator_type == "dur_disc_1":
net_dur_disc = DurationDiscriminatorV1(
hps.model.hidden_channels,
hps.model.hidden_channels,
3,
0.1,
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
).cuda(rank)
elif duration_discriminator_type == "dur_disc_2":
net_dur_disc = DurationDiscriminatorV2(
hps.model.hidden_channels,
hps.model.hidden_channels,
3,
0.1,
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
).cuda(rank)
else:
print("NOT using any duration discriminator like VITS1")
net_dur_disc = None
use_duration_discriminator = False
net_g = SynthesizerTrn(
len(symbols),
posterior_channels,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
mas_noise_scale_initial=mas_noise_scale_initial,
noise_scale_delta=noise_scale_delta,
**hps.model,
).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
if net_dur_disc is not None:
optim_dur_disc = torch.optim.AdamW(
net_dur_disc.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
else:
optim_dur_disc = None
# comment - choihkk
# if we comment out unused parameter like DurationDiscriminator's self.pre_out_norm1,2 self.norm_1,2
# and ResidualCouplingTransformersLayer's self.post_transformer
# we don't have to set find_unused_parameters=True
# but I will not proceed with commenting out for compatibility with the latest work for others
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
if net_dur_disc is not None:
net_dur_disc = DDP(
net_dur_disc, device_ids=[rank], find_unused_parameters=True)
try:
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g
)
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d
)
if net_dur_disc is not None:
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
net_dur_disc,
optim_dur_disc,
)
global_step = (epoch_str - 1) * len(train_loader)
except:
epoch_str = 1
global_step = 0
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
if net_dur_disc is not None:
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
else:
scheduler_dur_disc = None
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(
rank,
epoch,
hps,
[net_g, net_d, net_dur_disc],
[optim_g, optim_d, optim_dur_disc],
[scheduler_g, scheduler_d, scheduler_dur_disc],
scaler,
[train_loader, eval_loader],
logger,
[writer, writer_eval],
)
else:
train_and_evaluate(
rank,
epoch,
hps,
[net_g, net_d, net_dur_disc],
[optim_g, optim_d, optim_dur_disc],
[scheduler_g, scheduler_d, scheduler_dur_disc],
scaler,
[train_loader, None],
None,
None,
)
scheduler_g.step()
scheduler_d.step()
if net_dur_disc is not None:
scheduler_dur_disc.step()
def train_and_evaluate(
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
):
net_g, net_d, net_dur_disc = nets
optim_g, optim_d, optim_dur_disc = optims
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
if net_dur_disc is not None:
net_dur_disc.train()
if rank == 0:
loader = tqdm.tqdm(train_loader, desc="Loading train data")
else:
loader = train_loader
for batch_idx, (
x,
x_lengths,
spec,
spec_lengths,
y,
y_lengths,
speakers,
) in enumerate(loader):
if net_g.module.use_noise_scaled_mas:
current_mas_noise_scale = (
net_g.module.mas_noise_scale_initial
- net_g.module.noise_scale_delta * global_step
)
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
rank, non_blocking=True
)
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
rank, non_blocking=True
)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
rank, non_blocking=True
)
speakers = speakers.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run):
(
y_hat,
l_length,
attn,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
(hidden_x, logw, logw_),
(x_flown, x_expanded),
) = net_g(x, x_lengths, spec, spec_lengths, speakers)
if (
hps.model.use_mel_posterior_encoder
or hps.data.use_mel_posterior_encoder
):
mel = spec
else:
# comment - choihkk
# for numerical stable when using fp16 and torch>=2.0.0,
# spec.float() could be help in the training stage
# https://github.com/jaywalnut310/vits/issues/15
mel = spec_to_mel_torch(
spec.float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_mel = commons.slice_segments(
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y = commons.slice_segments(
y, ids_slice * hps.data.hop_length, hps.train.segment_size
) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
loss_disc_all = loss_disc
# Duration Discriminator
if net_dur_disc is not None:
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
hidden_x.detach(), x_mask.detach(), logw_.detach(), logw.detach()
)
with autocast(enabled=False):
# TODO: I think need to mean using the mask, but for now, just mean all
(
loss_dur_disc,
losses_dur_disc_r,
losses_dur_disc_g,
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
loss_dur_disc_all = loss_dur_disc
optim_dur_disc.zero_grad()
scaler.scale(loss_dur_disc_all).backward()
scaler.unscale_(optim_dur_disc)
grad_norm_dur_disc = commons.clip_grad_value_(
net_dur_disc.parameters(), None
)
scaler.step(optim_dur_disc)
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
if net_dur_disc is not None:
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw_, logw)
with autocast(enabled=False):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
# loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_kl = kl_loss(x_flown, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
prior_loss = torch.sum(0.5 * ((z.detach() - x_expanded) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(z_mask) * net_g.spec_channels)
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
if net_dur_disc is not None:
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
loss_gen_all += loss_dur_gen
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]["lr"]
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
logger.info(
"Train Epoch: {} [{:.0f}%]".format(
epoch, 100.0 * batch_idx / len(train_loader)
)
)
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc_all,
"learning_rate": lr,
"grad_norm_d": grad_norm_d,
"grad_norm_g": grad_norm_g,
}
if net_dur_disc is not None:
scalar_dict.update(
{
"loss/dur_disc/total": loss_dur_disc_all,
"grad_norm_dur_disc": grad_norm_dur_disc,
}
)
scalar_dict.update(
{
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/dur": loss_dur,
"loss/g/kl": loss_kl,
}
)
scalar_dict.update(
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
)
scalar_dict.update(
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
)
scalar_dict.update(
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
)
# if net_dur_disc is not None:
# scalar_dict.update({"loss/dur_disc_r" : f"{losses_dur_disc_r}"})
# scalar_dict.update({"loss/dur_disc_g" : f"{losses_dur_disc_g}"})
# scalar_dict.update({"loss/dur_gen" : f"{loss_dur_gen}"})
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(
y_mel[0].data.cpu().numpy()
),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].data.cpu().numpy()
),
"all/mel": utils.plot_spectrogram_to_numpy(
mel[0].data.cpu().numpy()
),
"all/attn": utils.plot_alignment_to_numpy(
attn[0, 0].data.cpu().numpy()
),
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
)
if global_step % hps.train.eval_interval == 0:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
)
if net_dur_disc is not None:
utils.save_checkpoint(
net_dur_disc,
optim_dur_disc,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
)
utils.remove_old_checkpoints(hps.model_dir, prefixes=["G_*.pth", "D_*.pth", "DUR_*.pth"])
global_step += 1
if rank == 0:
logger.info("====> Epoch: {}".format(epoch))
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
with torch.no_grad():
for batch_idx, (
x,
x_lengths,
spec,
spec_lengths,
y,
y_lengths,
speakers,
) in enumerate(eval_loader):
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
speakers = speakers.cuda(0)
# remove else
x = x[:1]
x_lengths = x_lengths[:1]
spec = spec[:1]
spec_lengths = spec_lengths[:1]
y = y[:1]
y_lengths = y_lengths[:1]
speakers = speakers[:1]
break
y_hat, attn, mask, *_ = generator.module.infer(
x, x_lengths, speakers, max_len=1000
)
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
if hps.model.use_mel_posterior_encoder or hps.data.use_mel_posterior_encoder:
mel = spec
else:
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
image_dict = {
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
}
audio_dict = {"gen/audio": y_hat[0, :, : y_hat_lengths[0]]}
if global_step == 0:
image_dict.update(
{"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())}
)
audio_dict.update({"gt/audio": y[0, :, : y_lengths[0]]})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate,
)
generator.train()
if __name__ == "__main__":
main()