-
Notifications
You must be signed in to change notification settings - Fork 11
/
index.html
474 lines (422 loc) · 28 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
<html>
<head>
<title></title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta charset="UTF-8">
</head>
<body>
<div id='content'>
<h1 id="antifold">AntiFold</h1>
<p>Code for AntiFold paper, accepted for <a href="https://openreview.net/forum?id=bxZMKHtlL6">NeurIPS 2023 GenBio spotlight</a></p>
<p>Webserver: <a href="https://opig.stats.ox.ac.uk/webapps/AntiFold/">OPIG webserver</a></p>
<p>Code: <a href="https://opig.stats.ox.ac.uk/data/downloads/AntiFold/antifold_code.zip">antifold_code.zip</a></p>
<p>Model: <a href="https://opig.stats.ox.ac.uk/data/downloads/AntiFold/models/model.pt">model.pt</a></p>
<p>License: <a href="https://opig.stats.ox.ac.uk/data/downloads/AntiFold/LICENSE">BSD 3-Clause</a></p>
<h1 id="colab">Colab</h1>
<p>To test the method out without installing it you can try this: <a href="https://colab.research.google.com/drive/1TTfgjoZx3mzF5u4e9b4Un9Y7b_rqXc_4"><img src="images/colab-badge.svg" alt="Open In Colab" /></a></p>
<h2 id="install-and-run-antifold">Install and run AntiFold</h2>
<p>Use the <a href="https://opig.stats.ox.ac.uk/data/downloads/AntiFold/notebook.ipynb">Jupyter notebook</a> or follow this guide with example PDBs:</p>
<h3 id="download-antifold">Download AntiFold</h3>
<pre><code class="hljs bash language-bash"><span class="hljs-comment"># Download code</span>
<span class="hljs-built_in">mkdir</span> -p antifold_code && <span class="hljs-built_in">cd</span> antifold_code
wget https://opig.stats.ox.ac.uk/data/downloads/AntiFold/antifold_code.zip
unzip antifold_code.zip
<span class="hljs-comment"># Download model</span>
<span class="hljs-built_in">mkdir</span> -p models
wget -P models/ https://opig.stats.ox.ac.uk/data/downloads/AntiFold/models/model.pt
</code></pre>
<h3 id="install-antifold-cpu">Install AntiFold (CPU)</h3>
<pre><code class="hljs bash language-bash">conda create --name antifold python=3.10 -y
conda activate antifold
conda install -c pytorch pytorch
conda install -c pyg pyg -y
conda install -c conda-forge pip -y
<span class="hljs-comment"># Install AntiFold from antifold_code directory</span>
pip install .
pip install torch-geometric==2.4.0
</code></pre>
<h3 id="install-antifold-gpu">Install AntiFold (GPU)</h3>
<pre><code class="hljs bash language-bash">conda create --name antifold python=3.10 -y
conda activate antifold
conda install -c conda-forge pytorch-gpu
conda install -c pyg pyg -y
conda install -c conda-forge pip -y
<span class="hljs-comment"># Install AntiFold from antifold_code directory</span>
pip install .
pip install torch-geometric==2.4.0
</code></pre>
<h3 id="run-antifold-residue-probabilities-embeddings-sampled-sequences">Run AntiFold (residue probabilities, embeddings, sampled sequences)</h3>
<pre><code class="hljs bash language-bash"><span class="hljs-comment"># Residue probabilities, sample 10 sequences in CDRH3 from single PDB</span>
python antifold/main.py \
--out_dir output/single_pdb \
--pdb_file data/pdbs/6y1l_imgt.pdb \
--heavy_chain H \
--light_chain L \
--num_seq_per_target 10 \
--sampling_temp <span class="hljs-string">"0.2"</span> \
--regions <span class="hljs-string">"CDRH3"</span>
<span class="hljs-comment"># Residue probabilities, sample 10 sequences at temperatures 0.20 & 0.30 in CDRs 1-3 from folder of PDBs</span>
python antifold/main.py \
--out_dir output/example_pdbs \
--pdbs_csv data/example_pdbs.csv \
--pdb_dir data/pdbs \
--num_seq_per_target 10 \
--sampling_temp <span class="hljs-string">"0.20 0.30"</span> \
--regions <span class="hljs-string">"CDR1 CDR2 CDR3"</span>
<span class="hljs-comment"># Extract ESM-IF1 embeddings from PDBs in folder, from all chains listed in untested.csv (not limited to VH/VL)</span>
python antifold/main.py \
--out_dir output/untested/ \
--pdbs_csv data/untested.csv \
--pdb_dir data/untested/ \
--use_esm_if1_weights \
--custom_chain_mode \
--extract_embeddings
</code></pre>
<h2 id="input-parameters">Input parameters</h2>
<p>Required parameters:</p>
<pre><code class="hljs text language-text">- Option 1: PDB file (--pdb_file) + specified heavy and light chain (--heavy_chain and --light_chain)
- Option 2: PDB folder (--pdb_dir) + CSV file specifying chains (--pdbs_csv)
- Output directory (--out_dir) for output inverse folding probabilities CSV and optional generated sequences FASTA
</code></pre>
<p>Parameters for generating new sequences:</p>
<pre><code class="hljs text language-text">- Number of sequences to generate (--num_seq_per_target)
- Region to mutate (--region) based on inverse folding probabilities. Select from list in IMGT_dict (e.g. 'CDRH1 CDRH2 CDRH3')
- Sampling temperature (--sampling_temp) controls generated sequence diversity, by scaling the inverse folding probabilities before sampling. Temperature = 1 means no change, while temperature ~ 0 only samples the most likely amino-acid at each position (acts as argmax).
</code></pre>
<p>Optional parameters:</p>
<pre><code class="hljs text language-text">- Multi-chain mode for including antigen or other chains (--custom_chain_mode) - Nb, experimental (see example above)
- Extract latent representations of PDB within model (--extract_embeddings)
- Use ESM-IF1 instead of AntiFold model weights (--model_path "ESM-IF1")
</code></pre>
<h2 id="example-output">Example output</h2>
<p>Output CSV with residue log-probabilities: Residue probabilities: <a href="https://opig.stats.ox.ac.uk/data/downloads/AntiFold/output/example_pdbs/6y1l_imgt.csv">6y1l_imgt.csv</a></p>
<ul>
<li>pdb_pos - PDB residue number</li>
<li>pdb_chain - PDB chain</li>
<li>aa_orig - PDB residue (e.g. 112)</li>
<li>aa_pred - Top predicted residue by AntiFold (argmax) for this position</li>
<li>pdb_posins - PDB residue number with insertion code (e.g. 112A)</li>
<li>perplexity - Inverse folding tolerance (higher is more tolerant) to mutations. See paper for more details.</li>
<li>Amino-acids - Inverse folding scores (log-likelihood) for the given position</li>
</ul>
<pre><code class="hljs csv language-csv">pdb_pos,pdb_chain,aa_orig,aa_pred,pdb_posins,perplexity,A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y
2,H,V,M,2,1.6488,<span class="hljs-string">-4</span>.9963,<span class="hljs-string">-6</span>.6117,<span class="hljs-string">-6</span>.3181,<span class="hljs-string">-6</span>.3243,<span class="hljs-string">-6</span>.7570,<span class="hljs-string">-4</span>.2518,<span class="hljs-string">-6</span>.7514,<span class="hljs-string">-5</span>.2540,<span class="hljs-string">-6</span>.8067,<span class="hljs-string">-5</span>.8619,<span class="hljs-string">-0</span>.0904,<span class="hljs-string">-6</span>.5493,<span class="hljs-string">-4</span>.8639,<span class="hljs-string">-6</span>.6316,<span class="hljs-string">-6</span>.3084,<span class="hljs-string">-5</span>.1900,<span class="hljs-string">-5</span>.0988,<span class="hljs-string">-3</span>.7295,<span class="hljs-string">-8</span>.0480,<span class="hljs-string">-7</span>.3236
3,H,Q,Q,3,1.3889,<span class="hljs-string">-10</span>.5258,<span class="hljs-string">-12</span>.8463,<span class="hljs-string">-8</span>.4800,<span class="hljs-string">-4</span>.7630,<span class="hljs-string">-12</span>.9094,<span class="hljs-string">-11</span>.0924,<span class="hljs-string">-5</span>.6136,<span class="hljs-string">-10</span>.9870,<span class="hljs-string">-3</span>.1119,<span class="hljs-string">-8</span>.1113,<span class="hljs-string">-9</span>.4382,<span class="hljs-string">-6</span>.2246,<span class="hljs-string">-13</span>.3660,<span class="hljs-string">-0</span>.0701,<span class="hljs-string">-4</span>.9957,<span class="hljs-string">-10</span>.0301,<span class="hljs-string">-6</span>.8618,<span class="hljs-string">-7</span>.5810,<span class="hljs-string">-13</span>.6721,<span class="hljs-string">-11</span>.4157
4,H,L,L,4,1.0021,<span class="hljs-string">-13</span>.3581,<span class="hljs-string">-12</span>.6206,<span class="hljs-string">-17</span>.5484,<span class="hljs-string">-12</span>.4801,<span class="hljs-string">-9</span>.8792,<span class="hljs-string">-13</span>.6382,<span class="hljs-string">-14</span>.8609,<span class="hljs-string">-13</span>.9344,<span class="hljs-string">-16</span>.4080,<span class="hljs-string">-0</span>.0002,<span class="hljs-string">-9</span>.2727,<span class="hljs-string">-16</span>.6532,<span class="hljs-string">-14</span>.0476,<span class="hljs-string">-12</span>.5943,<span class="hljs-string">-15</span>.4559,<span class="hljs-string">-16</span>.9103,<span class="hljs-string">-17</span>.0809,<span class="hljs-string">-10</span>.5670,<span class="hljs-string">-13</span>.5334,<span class="hljs-string">-13</span>.4324
...
</code></pre>
<p>Output FASTA file with sampled sequences: <a href="https://opig.stats.ox.ac.uk/data/downloads/AntiFold/output/example_pdbs/6y1l_imgt.fasta">6y1l_imgt.fasta</a></p>
<ul>
<li>T: Temperature used for design</li>
<li>score: average log-odds of residues in the sampled region</li>
<li>global_score: average log-odds of all residues (IMGT positions 1-128)</li>
<li>regions: regions selected for design</li>
<li>seq_recovery: # mutations / total sequence length</li>
<li>mutations: # mutations from original PDB sequence</li>
</ul>
<pre><code class="hljs fasta language-fasta">>6y1l_imgt , <span class="hljs-attribute">score</span>=0.2934, <span class="hljs-attribute">global_score</span>=0.2934, regions=[<span class="hljs-string">'CDR1'</span>, <span class="hljs-string">'CDR2'</span>, <span class="hljs-string">'CDRH3'</span>], <span class="hljs-attribute">model_name</span>=AntiFold, <span class="hljs-attribute">seed</span>=42
VQLQESGPGLVKPSETLSLTCAVSGYSISSGYYWGWIRQPPGKGLEWIGSIYHSGSTYYN
PSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAGLTQSSHNDANWGQGTLVTVSS/V
LTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKRLIYDNNKRPSGIPDRF
SGSKSGTSATLGITGLQTGDEADYYCGTWDSSLNPVFGGGTKLEIKR
> <span class="hljs-attribute">T</span>=0.20, <span class="hljs-attribute">sample</span>=1, <span class="hljs-attribute">score</span>=0.3930, <span class="hljs-attribute">global_score</span>=0.1869, <span class="hljs-attribute">seq_recovery</span>=0.8983, <span class="hljs-attribute">mutations</span>=12
VQLQESGPGLVKPSETLSLTCAVSGASITSSYYWGWIRQPPGKGLEWIGSIYYSGSTYYN
PSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAGLYGSPWSNPYWGQGTLVTVSS/V
LTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKRLIYDNNKRPSGIPDRF
SGSKSGTSATLGITGLQTGDEADYYCGTWDSSLNPVFGGGTKLEIKR
<span class="hljs-built_in">..</span>.
</code></pre>
<h2 id="example-notebook">Example notebook</h2>
<p>Notebook: <a href="https://opig.stats.ox.ac.uk/data/downloads/AntiFold/notebook.ipynb">notebook.ipynb</a></p>
<pre><code class="hljs python language-python"><span class="hljs-keyword">import</span> pandas <span class="hljs-keyword">as</span> pd
<span class="hljs-comment"># Put IMGT numbered PDBs (Fv only, IMGT position 1-128) to process and load a CSV file with PDB names and heavy/light chains</span>
<span class="hljs-comment"># Define the PDB and chains in DataFrame</span>
pdb_dir = <span class="hljs-string">"data/pdbs"</span>
df_pdbs = pd.read_csv(<span class="hljs-string">"data/example_pdbs.csv"</span>)
<span class="hljs-comment"># Regions to mutate (IMGT)</span>
regions_to_mutate = [<span class="hljs-string">"CDR1"</span>, <span class="hljs-string">"CDR2"</span>, <span class="hljs-string">"CDR3H"</span>]
<span class="hljs-comment"># Load model</span>
<span class="hljs-keyword">import</span> antifold.main <span class="hljs-keyword">as</span> antifold
model = antifold.load_IF1_model(<span class="hljs-string">"models/model.pt"</span>)
<span class="hljs-comment"># Sample from PDBs, 10 sequences each at temperature 0.50 in regions CDR1, CDR2, CDR3H</span>
pdb_output_dict = antifold.sample_pdbs(
model,
pdbs_csv_or_dataframe=df_pdbs, <span class="hljs-comment"># Path to CSV file, or a DataFrame</span>
regions_to_mutate=regions_to_mutate,
pdb_dir=<span class="hljs-string">"data/pdbs"</span>,
sample_n=<span class="hljs-number">10</span>,
sampling_temp=<span class="hljs-number">0.50</span>,
limit_expected_variation=<span class="hljs-literal">False</span>
)
<span class="hljs-comment"># Output dictionary with sequences, and residue probabilities or log-odds</span>
pdbs = pdb_output_dict.keys()
<span class="hljs-comment"># Residue log probabilities</span>
df_logprobs = pdb_output_dict[<span class="hljs-string">"6y1l_imgt"</span>][<span class="hljs-string">"logprobs"</span>]
<span class="hljs-comment"># Sampled sequences</span>
fasta_dict = pdb_output_dict[<span class="hljs-string">"6y1l_imgt"</span>][<span class="hljs-string">"sequences"</span>]
</code></pre>
<h2 id="usage">Usage</h2>
<pre><code class="hljs bash language-bash">usage:
<span class="hljs-comment"># Predict on example PDBs in folder</span>
python antifold/main.py --pdbs_csv data/example_pdbs.csv --pdb_dir data/pdbs --out_dir output/
Predict inverse folding probabilities <span class="hljs-keyword">for</span> antibody variable domain, and sample sequences with maintained <span class="hljs-built_in">fold</span>.
PDB structures should be IMGT-numbered, paired heavy and light chain variable domains (positions 1-128).
For IMGT numbering PDBs use SAbDab or https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred/anarci/
options:
-h, --<span class="hljs-built_in">help</span> show this <span class="hljs-built_in">help</span> message and <span class="hljs-built_in">exit</span>
--pdb_file PDB_FILE Input PDB file (<span class="hljs-keyword">for</span> single PDB predictions)
--heavy_chain HEAVY_CHAIN
Ab heavy chain (<span class="hljs-keyword">for</span> single PDB predictions)
--light_chain LIGHT_CHAIN
Ab light chain (<span class="hljs-keyword">for</span> single PDB predictions)
--antigen_chain ANTIGEN_CHAIN
Antigen chain (experimental)
--pdbs_csv PDBS_CSV Input CSV file with PDB names and H/L chains (multi-PDB predictions)
--pdb_dir PDB_DIR Directory with input PDB files (multi-PDB predictions)
--out_dir OUT_DIR Output directory
--regions REGIONS Space-separated regions to mutate. Default <span class="hljs-string">'CDR1 CDR2 CDR3H'</span>
--num_seq_per_target NUM_SEQ_PER_TARGET
Number of sequences to sample from each antibody PDB (default 0)
--sampling_temp SAMPLING_TEMP
A string of temperatures e.g. <span class="hljs-string">'0.20 0.25 0.50'</span> (default 0.20). Sampling temperature <span class="hljs-keyword">for</span> amino acids. Suggested values 0.10, 0.15, 0.20, 0.25, 0.30. Higher values will lead to more diversity.
--limit_variation Limit variation to as many mutations as expected from temperature sampling
--extract_embeddings Extract per-residue embeddings from AntiFold / ESM-IF1
--custom_chain_mode Custom chain input (experimental, e.g. single chain, inclusion of antigen chain or any chains with ESM-IF1)
--exclude_heavy Exclude heavy chain from sampling
--exclude_light Exclude light chain from sampling
--batch_size BATCH_SIZE
Batch-size to use
--num_threads NUM_THREADS
Number of CPU threads to use <span class="hljs-keyword">for</span> parallel processing (0 = all available)
--seed SEED Seed <span class="hljs-keyword">for</span> reproducibility
--model_path MODEL_PATH
AntiFold model weights. See --use_esm_if1_weights flag to use ESM-IF1 weights instead of AntiFold
--use_esm_if1_weights
Use ESM-IF1 weights instead of AntiFold
--verbose VERBOSE Verbose printing
</code></pre>
<h2 id="imgt-regions-dict">IMGT regions dict</h2>
<p>Used to specify which regions to mutate in an IMGT numbered PDB</p>
<ul>
<li>IMGT numbered PDBs: <a href="https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab">https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabdab</a></li>
<li>Renumber existing PDBs with ANARCI: <a href="https://github.com/oxpig/ANARCI">https://github.com/oxpig/ANARCI</a></li>
<li>Read more: <a href="https://www.imgt.org/IMGTScientificChart/Numbering/IMGTIGVLsuperfamily.html">https://www.imgt.org/IMGTScientificChart/Numbering/IMGTIGVLsuperfamily.html</a></li>
</ul>
<pre><code class="hljs python language-python">IMGT_dict = {
<span class="hljs-string">"all"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">1</span>, <span class="hljs-number">128</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"allH"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">1</span>, <span class="hljs-number">128</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"allL"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">1</span>, <span class="hljs-number">128</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FWH"</span>: <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">1</span>, <span class="hljs-number">26</span> + <span class="hljs-number">1</span>)) + <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">40</span>, <span class="hljs-number">55</span> + <span class="hljs-number">1</span>)) + <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">66</span>, <span class="hljs-number">104</span> + <span class="hljs-number">1</span>)),
<span class="hljs-string">"FWL"</span>: <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">1</span>, <span class="hljs-number">26</span> + <span class="hljs-number">1</span>)) + <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">40</span>, <span class="hljs-number">55</span> + <span class="hljs-number">1</span>)) + <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">66</span>, <span class="hljs-number">104</span> + <span class="hljs-number">1</span>)),
<span class="hljs-string">"CDRH"</span>: <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">27</span>, <span class="hljs-number">39</span>)) + <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">56</span>, <span class="hljs-number">65</span> + <span class="hljs-number">1</span>)) + <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">105</span>, <span class="hljs-number">117</span> + <span class="hljs-number">1</span>)),
<span class="hljs-string">"CDRL"</span>: <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">27</span>, <span class="hljs-number">39</span>)) + <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">56</span>, <span class="hljs-number">65</span> + <span class="hljs-number">1</span>)) + <span class="hljs-built_in">list</span>(<span class="hljs-built_in">range</span>(<span class="hljs-number">105</span>, <span class="hljs-number">117</span> + <span class="hljs-number">1</span>)),
<span class="hljs-string">"FW1"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">1</span>, <span class="hljs-number">26</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FWH1"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">1</span>, <span class="hljs-number">26</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FWL1"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">1</span>, <span class="hljs-number">26</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"CDR1"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">27</span>, <span class="hljs-number">39</span>),
<span class="hljs-string">"CDRH1"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">27</span>, <span class="hljs-number">39</span>),
<span class="hljs-string">"CDRL1"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">27</span>, <span class="hljs-number">39</span>),
<span class="hljs-string">"FW2"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">40</span>, <span class="hljs-number">55</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FWH2"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">40</span>, <span class="hljs-number">55</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FWL2"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">40</span>, <span class="hljs-number">55</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"CDR2"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">56</span>, <span class="hljs-number">65</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"CDRH2"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">56</span>, <span class="hljs-number">65</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"CDRL2"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">56</span>, <span class="hljs-number">65</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FW3"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">66</span>, <span class="hljs-number">104</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FWH3"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">66</span>, <span class="hljs-number">104</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FWL3"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">66</span>, <span class="hljs-number">104</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"CDR3"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">105</span>, <span class="hljs-number">117</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"CDRH3"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">105</span>, <span class="hljs-number">117</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"CDRL3"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">105</span>, <span class="hljs-number">117</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FW4"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">118</span>, <span class="hljs-number">128</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FWH4"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">118</span>, <span class="hljs-number">128</span> + <span class="hljs-number">1</span>),
<span class="hljs-string">"FWL4"</span>: <span class="hljs-built_in">range</span>(<span class="hljs-number">118</span>, <span class="hljs-number">128</span> + <span class="hljs-number">1</span>),
}
</code></pre>
</div>
<style type='text/css'>body {
font: 400 16px/1.5 "Helvetica Neue", Helvetica, Arial, sans-serif;
color: #111;
background-color: #fbfbfb;
-webkit-text-size-adjust: 100%;
-webkit-font-feature-settings: "kern" 1;
-moz-font-feature-settings: "kern" 1;
-o-font-feature-settings: "kern" 1;
font-feature-settings: "kern" 1;
font-kerning: normal;
padding: 30px;
}
@media only screen and (max-width: 600px) {
body {
padding: 5px;
}
body>#content {
padding: 0px 20px 20px 20px !important;
}
}
body>#content {
margin: 0px;
max-width: 900px;
border: 1px solid #e1e4e8;
padding: 10px 40px;
padding-bottom: 20px;
border-radius: 2px;
margin-left: auto;
margin-right: auto;
}
summary {
cursor: pointer;
text-decoration: underline;
}
hr {
color: #bbb;
background-color: #bbb;
height: 1px;
flex: 0 1 auto;
margin: 1em 0;
padding: 0;
border: none;
}
.hljs-operator {
color: #868686;
/* There is a bug where the syntax highlighter would pick no color for e.g. `&&` symbols in the code samples. Let's overwrite this */
}
/**
* Links
*/
a {
color: #0366d6;
text-decoration: none;
}
a:visited {
color: #0366d6;
}
a:hover {
color: #0366d6;
text-decoration: underline;
}
pre {
background-color: #f6f8fa;
border-radius: 3px;
font-size: 85%;
line-height: 1.45;
overflow: auto;
padding: 16px;
}
/**
* Code blocks
*/
code {
background-color: rgba(27, 31, 35, .05);
border-radius: 3px;
font-size: 85%;
margin: 0;
word-wrap: break-word;
padding: .2em .4em;
font-family: SFMono-Regular, Consolas, Liberation Mono, Menlo, Courier, monospace;
}
pre>code {
background-color: transparent;
border: 0;
display: inline;
line-height: inherit;
margin: 0;
overflow: visible;
padding: 0;
word-wrap: normal;
font-size: 100%;
}
/**
* Blockquotes
*/
blockquote {
margin-left: 30px;
margin-top: 0px;
margin-bottom: 16px;
border-left-width: 3px;
padding: 0 1em;
color: #828282;
border-left: 4px solid #e8e8e8;
padding-left: 15px;
font-size: 18px;
letter-spacing: -1px;
font-style: italic;
}
blockquote * {
font-style: normal !important;
letter-spacing: 0;
color: #6a737d !important;
}
/**
* Tables
*/
table {
border-spacing: 2px;
display: block;
font-size: 14px;
overflow: auto;
width: 100%;
margin-bottom: 16px;
border-spacing: 0;
border-collapse: collapse;
}
td {
padding: 6px 13px;
border: 1px solid #dfe2e5;
}
th {
font-weight: 600;
padding: 6px 13px;
border: 1px solid #dfe2e5;
}
tr {
background-color: #fff;
border-top: 1px solid #c6cbd1;
}
table tr:nth-child(2n) {
background-color: #f6f8fa;
}
/**
* Others
*/
img {
max-width: 100%;
}
p {
line-height: 24px;
font-weight: 400;
font-size: 16px;
color: #24292e;
}
ul {
margin-top: 0;
}
li {
color: #24292e;
font-size: 16px;
font-weight: 400;
line-height: 1.5;
}
li+li {
margin-top: 0.25em;
}
* {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
color: #24292e;
}
a:visited {
color: #0366d6;
}
h1,
h2,
h3 {
border-bottom: 1px solid #eaecef;
color: #111;
/* Darker */
}
code>* {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace !important;
}</style>
<style type='text/css'>pre code.hljs{display:block;overflow-x:auto;padding:1em}code.hljs{padding:3px 5px}.hljs{color:#abb2bf;background:#282c34}.hljs-comment,.hljs-quote{color:#5c6370;font-style:italic}.hljs-doctag,.hljs-formula,.hljs-keyword{color:#c678dd}.hljs-deletion,.hljs-name,.hljs-section,.hljs-selector-tag,.hljs-subst{color:#e06c75}.hljs-literal{color:#56b6c2}.hljs-addition,.hljs-attribute,.hljs-meta .hljs-string,.hljs-regexp,.hljs-string{color:#98c379}.hljs-attr,.hljs-number,.hljs-selector-attr,.hljs-selector-class,.hljs-selector-pseudo,.hljs-template-variable,.hljs-type,.hljs-variable{color:#d19a66}.hljs-bullet,.hljs-link,.hljs-meta,.hljs-selector-id,.hljs-symbol,.hljs-title{color:#61aeee}.hljs-built_in,.hljs-class .hljs-title,.hljs-title.class_{color:#e6c07b}.hljs-emphasis{font-style:italic}.hljs-strong{font-weight:700}.hljs-link{text-decoration:underline}</style>
</body>
</html>