-
Notifications
You must be signed in to change notification settings - Fork 0
/
lambert.py
184 lines (153 loc) · 8.55 KB
/
lambert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import math
class LambertEllipsoid:
def __init__(self, semi_major_axis, flattening):
self.semi_major_axis = semi_major_axis
self.flattening = flattening
self.eccentricity = math.sqrt(self.flattening * (2.0 - self.flattening))
class LambertProjection:
def __init__(self, name, ellipsoid, standard_parallel_1, standard_parallel_2, latitude_origin, longitude_origin, x_origin, y_origin):
self.name = name
self.ellipsoid = ellipsoid
self.standard_parallel_1 = standard_parallel_1
#print 'self.standard_parallel_1:' + str(self.standard_parallel_1)
self.standard_parallel_1_radians = (self.standard_parallel_1 / 180.0) * math.pi
#print 'self.standard_parallel_1_radians:' + str(self.standard_parallel_1_radians)
self.standard_parallel_2 = standard_parallel_2
#print 'self.standard_parallel_2:' + str(self.standard_parallel_2)
self.standard_parallel_2_radians = (self.standard_parallel_2 / 180.0) * math.pi
#print 'self.standard_parallel_2_radians:' + str(self.standard_parallel_2_radians)
self.latitude_origin = latitude_origin
#print 'self.latitude_origin:' + str(self.latitude_origin)
self.latitude_origin_radians = (self.latitude_origin / 180.0) * math.pi
#print 'self.latitude_origin_radians:' + str(self.latitude_origin_radians)
self.longitude_origin = longitude_origin
#print 'self.longitude_origin:' + str(self.longitude_origin)
self.longitude_origin_radians = (self.longitude_origin / 180.0) * math.pi
#print 'self.longitude_origin_radians:' + str(self.longitude_origin_radians)
self.x_origin = x_origin
#print 'self.x_origin:' + str(self.x_origin)
self.y_origin = y_origin
#print 'self.y_origin:' + str(self.y_origin)
self.m_1 = (math.cos(self.standard_parallel_1_radians) / math.sqrt((1.0 - self.ellipsoid.eccentricity * self.ellipsoid.eccentricity * math.pow(math.sin(self.standard_parallel_1_radians), 2.0))))
#print 'self.m_1:' + str(self.m_1)
self.m_2 = (math.cos(self.standard_parallel_2_radians) / math.sqrt((1.0 - self.ellipsoid.eccentricity * self.ellipsoid.eccentricity * math.pow(math.sin(self.standard_parallel_2_radians), 2.0))))
#print 'self.m_2:' + str(self.m_2)
self.t_0 = (math.tan(math.pi / 4.0 - self.latitude_origin_radians / 2.0) / math.pow(((1.0 - self.ellipsoid.eccentricity * math.sin(self.latitude_origin_radians)) / (1.0 + self.ellipsoid.eccentricity * math.sin(self.latitude_origin_radians))), self.ellipsoid.eccentricity / 2.0))
#print 'self.t_0:' + str(self.t_0)
self.t_1 = (math.tan(math.pi / 4.0 - self.standard_parallel_1_radians / 2.0) / math.pow(((1.0 - self.ellipsoid.eccentricity * math.sin(self.standard_parallel_1_radians)) / (1.0 + self.ellipsoid.eccentricity * math.sin(self.standard_parallel_1_radians))), self.ellipsoid.eccentricity / 2.0))
#print 'self.t_1:' + str(self.t_1)
self.t_2 = (math.tan(math.pi / 4.0 - self.standard_parallel_2_radians / 2.0) / math.pow(((1.0 - self.ellipsoid.eccentricity * math.sin(self.standard_parallel_2_radians)) / (1.0 + self.ellipsoid.eccentricity * math.sin(self.standard_parallel_2_radians))), self.ellipsoid.eccentricity / 2.0))
#print 'self.t_2:' + str(self.t_2)
self.n = ((math.log(self.m_1) - math.log(self.m_2)) / (math.log(self.t_1) - math.log(self.t_2)))
#print 'self.n:' + str(self.n)
self.g = self.m_1 / (self.n * math.pow(self.t_1, self.n))
#print 'self.g:' + str(self.g)
self.r_0 = ellipsoid.semi_major_axis * self.g * math.pow(math.fabs(self.t_0), self.n)
#print 'self.r_0:' + str(self.r_0)
def to_wgs84(self, x, y):
r = (math.sqrt(math.pow(x - self.x_origin, 2.0) + math.pow((self.r_0 - (y - self.y_origin)), 2.0)))
#print 'r:' + str(r)
#print 'self.x_origin:' + str(self.x_origin)
t = math.pow((r / (self.ellipsoid.semi_major_axis * self.g)), 1.0 / self.n)
#print 't:' + str(t)
#print 'self.ellipsoid.semi_major_axis:' + str(self.ellipsoid.semi_major_axis)
#print 'self.g:' + str(self.g)
#print 'self.n:' + str(self.n)
phi = math.atan((x - self.x_origin) / (self.r_0 - (y - self.y_origin)))
#print 'phi:' + str(phi)
longitude = ((phi / self.n) + self.longitude_origin_radians)
#print 'longitude:' + str(longitude)
latitude = (math.pi / 2.0 - 2.0 * math.atan(t))
#print 'latitude:' + str(latitude)
e = self.ellipsoid.eccentricity
#print 'e' + str(e)
new_latitude = 0;
while(new_latitude != latitude):
#print new_latitude, latitude
new_latitude = latitude
latitude = (math.pi / 2.0 - 2.0 * math.atan(t * math.pow(((1.0 - e * math.sin(latitude)) / (1.0 + e * math.sin(latitude))), e / 2.0)))
hayford = Hayford1924Ellipsoid()
phi_72 = latitude
lambda_72 = longitude
h_72 = 100
a_72 = hayford.semi_major_axis
e_72 = hayford.eccentricity
es_72 = e_72 * e_72
#print 'es_72:' + str(es_72)
sin_phi_72 = math.sin(phi_72)
#print 'sin_phi_72:' + str(sin_phi_72)
cos_phi_72 = math.cos(phi_72)
#print 'cos_phi_72:' + str(cos_phi_72)
sin_lambda_72 = math.sin(lambda_72)
#print 'sin_lambda_72:' + str(sin_lambda_72)
cos_lambda_72 = math.cos(lambda_72)
#print 'cos_lambda_72:' + str(cos_lambda_72)
v_72 = a_72 / math.sqrt(1.0 - (es_72 * sin_phi_72 * sin_phi_72))
#print 'v_72:' + str(v_72)
x_72 = (v_72 + h_72) * cos_phi_72 * cos_lambda_72
#print 'x_72:' + str(x_72)
y_72 = (v_72 + h_72) * cos_phi_72 * sin_lambda_72
#print 'y_72:' + str(y_72)
z_72 = ((1.0 - es_72) * v_72 + h_72) * sin_phi_72
#print 'z_72:' + str(z_72)
# translations.
x_trans = 106.868628;
y_trans = 52.297783;
z_trans = 103.723893;
x_89 = x_72 - x_trans;
#print 'x_89:' + str(x_89)
y_89 = y_72 + y_trans;
#print 'y_89:' + str(y_89)
z_89 = z_72 - z_trans;
#print 'z_89:' + str(z_89)
# rotations.
x_angle_degree = 0.336570 / 3600.0
x_angle = (x_angle_degree / 180.0) * math.pi
sin_x_angle = math.sin(x_angle)
cos_x_angle = math.cos(x_angle)
y_angle_degree = -0.456955 / 3600.0
y_angle = (y_angle_degree / 180.0) * math.pi
sin_y_angle = math.sin(y_angle)
cos_y_angle = math.cos(y_angle)
z_angle_degree = 1.842183 / 3600.0
z_angle = (z_angle_degree / 180.0) * math.pi
sin_z_angle = math.sin(z_angle)
cos_z_angle = math.cos(z_angle)
# rotate around x.
# x_89 = x_89;
y_89 = y_89 * cos_x_angle - z_89 * sin_x_angle;
z_89 = y_89 * sin_x_angle + z_89 * cos_x_angle;
# rotate around y.
x_89 = x_89 * cos_y_angle + z_89 * sin_y_angle;
# y_89 = y_89;
z_89 = x_89 * (-sin_y_angle) + z_89 * cos_y_angle;
# rotate around Z.
x_89 = x_89 * cos_z_angle - y_89 * sin_z_angle;
y_89 = x_89 * sin_z_angle + y_89 * cos_z_angle;
# z_89 = z_89;
#print 'x_89:' + str(x_89)
#print 'y_89:' + str(y_89)
#print 'z_89:' + str(z_89)
wgs1984 = Wgs1984Ellipsoid()
e = wgs1984.eccentricity
es = e * e
ps = x_89 * x_89 + y_89 * y_89
p = math.sqrt(ps)
r = math.sqrt(ps + z_89 * z_89)
f = wgs1984.flattening
a = wgs1984.semi_major_axis
u = math.atan((z_89 / p) * ((1.0 - f) + (es * a / r)))
lambda1 = math.atan(y_89 / x_89)
phi = math.atan((z_89 * (1.0 - f) + (es * a * math.pow(math.sin(u), 3))) / ((1.0 - f) * (p - (es * a * math.pow(math.cos(u), 3)))))
longitude_84 = (lambda1 / math.pi) * 180.0
latitude_84 = (phi / math.pi) * 180.0
return [ latitude_84, longitude_84 ]
class Belgium1972LambertProjection(LambertProjection):
def __init__(self):
LambertProjection.__init__(self, 'Belgium 1972 Projection', Hayford1924Ellipsoid(), 49.833334,51.166667, 90, 4.367487, 150000.01256, 5400088.438)
class Hayford1924Ellipsoid(LambertEllipsoid):
def __init__(self):
LambertEllipsoid.__init__(self, 6378388.0, 1.0 / 297.0)
class Wgs1984Ellipsoid(LambertEllipsoid):
def __init__(self):
LambertEllipsoid.__init__(self, 6378137.0, 1 / 298.257223563)