diff --git a/energy_models/core/investments/disciplines/documentation/energy_invest_disc.md b/energy_models/core/investments/disciplines/documentation/energy_invest_disc.md index f16e87112..2c2ae181d 100644 --- a/energy_models/core/investments/disciplines/documentation/energy_invest_disc.md +++ b/energy_models/core/investments/disciplines/documentation/energy_invest_disc.md @@ -2,5 +2,5 @@ The distribution of investments is made according to the investments level mix dataframe in input. Each coefficient for each energy/technology over the years is normalized by the sum of coefficients for one year and multiplied by the total investments level : -$$ energy\_investment = total\_investment * \frac{energy\_mix\_coefficient}{\sum energy\_mix\_coefficient}$$ +$$energy\_investment = total\_investment * \frac{energy\_mix\_coefficient}{\sum energy\_mix\_coefficient}$$ diff --git a/energy_models/core/investments/disciplines/documentation/energy_or_ccs_invest_disc.md b/energy_models/core/investments/disciplines/documentation/energy_or_ccs_invest_disc.md index e5961dc64..5e54ce6dd 100644 --- a/energy_models/core/investments/disciplines/documentation/energy_or_ccs_invest_disc.md +++ b/energy_models/core/investments/disciplines/documentation/energy_or_ccs_invest_disc.md @@ -2,7 +2,7 @@ The distribution of global investments into CCS and energy conversion is made following a percentage of CCS investment compared to global investment. -$$ ccs\_investment = global\_investment * \frac{ccs\_mix\_percentage}{100}$$ +$$ccs\_investment = global\_investment * \frac{ccs\_mix\_percentage}{100}$$ -$$ energy\_conversion\_investment = global\_investment *(1.0- \frac{ccs\_mix\_percentage}{100})$$ +$$energy\_conversion\_investment = global\_investment *(1.0- \frac{ccs\_mix\_percentage}{100})$$ diff --git a/energy_models/core/investments/disciplines/documentation/independent_invest_disc.md b/energy_models/core/investments/disciplines/documentation/independent_invest_disc.md index ac6b1202a..5587e5d12 100644 --- a/energy_models/core/investments/disciplines/documentation/independent_invest_disc.md +++ b/energy_models/core/investments/disciplines/documentation/independent_invest_disc.md @@ -2,5 +2,5 @@ The distribution of investments is made according to the investments coming from the design space. A constraint is computed in order to obtain a sum of investments lower than the investment dedicated for energy production coming from the macroeconomics model. -$$ investment\_constraint = energy\_investment > \sum technos\_investments$$ +$$investment\_constraint = energy\_investment > \sum technos\_investments$$ diff --git a/energy_models/core/investments/disciplines/documentation/techno_invest_disc.md b/energy_models/core/investments/disciplines/documentation/techno_invest_disc.md index f16e87112..2c2ae181d 100644 --- a/energy_models/core/investments/disciplines/documentation/techno_invest_disc.md +++ b/energy_models/core/investments/disciplines/documentation/techno_invest_disc.md @@ -2,5 +2,5 @@ The distribution of investments is made according to the investments level mix dataframe in input. Each coefficient for each energy/technology over the years is normalized by the sum of coefficients for one year and multiplied by the total investments level : -$$ energy\_investment = total\_investment * \frac{energy\_mix\_coefficient}{\sum energy\_mix\_coefficient}$$ +$$energy\_investment = total\_investment * \frac{energy\_mix\_coefficient}{\sum energy\_mix\_coefficient}$$ diff --git a/energy_models/core/techno_type/techno_disc.py b/energy_models/core/techno_type/techno_disc.py index 912ee14fb..db612c3b5 100644 --- a/energy_models/core/techno_type/techno_disc.py +++ b/energy_models/core/techno_type/techno_disc.py @@ -507,7 +507,7 @@ def compute_sos_jacobian(self): if 'all_resource_ratio_usable_demand' in inputs_dict.keys(): if ratio_name in inputs_dict[ 'all_resource_ratio_usable_demand'].columns and ratio_name != GlossaryEnergy.Years: - production_woratio = self.techno_model.production_woratio[column] + production_woratio = self.techno_model.production_woratio[column].values self.dprod_column_dratio[column][ratio_name] = self.techno_model.compute_dprod_dratio( production_woratio, ratio_name=ratio_name, @@ -592,7 +592,7 @@ def compute_sos_jacobian(self): self.techno_model.construction_resource_list]: pass else: - consumption_woratio = self.techno_model.consumption_woratio[column] + consumption_woratio = self.techno_model.consumption_woratio[column].values dprod_dratio = self.techno_model.compute_dprod_dratio( consumption_woratio, ratio_name=ratio_name, diff --git a/energy_models/models/carbon_storage/geologic_mineralization/documentation/geologic_mineralization_disc.markdown b/energy_models/models/carbon_storage/geologic_mineralization/documentation/geologic_mineralization_disc.markdown index 4081bf27b..b065da8b2 100644 --- a/energy_models/models/carbon_storage/geologic_mineralization/documentation/geologic_mineralization_disc.markdown +++ b/energy_models/models/carbon_storage/geologic_mineralization/documentation/geologic_mineralization_disc.markdown @@ -2,8 +2,8 @@ The CO2 mineralization process is proposed by carbfix [^1] amongst others. The process consists of the dissolution of CO2 into water and inject the CO2- heavy water to react with basalt rocks. The CO2-heavy water reacts with Calcium (Ca) and Magnesium (Mg) contained in basalt for long term storage. -$$ CaO + CO_2 --> CaCO_3$$ -$$ MgO + CO_2 --> MgCO_3$$ +$$CaO + CO_2 --> CaCO_3$$ +$$MgO + CO_2 --> MgCO_3$$ ![](Geologic_Mineralization.PNG)[^1] diff --git a/energy_models/models/gaseous_hydrogen/electrolysis/pem/documentation/electrolysis_pem_disc.markdown b/energy_models/models/gaseous_hydrogen/electrolysis/pem/documentation/electrolysis_pem_disc.markdown index c999b2f31..6354f6978 100644 --- a/energy_models/models/gaseous_hydrogen/electrolysis/pem/documentation/electrolysis_pem_disc.markdown +++ b/energy_models/models/gaseous_hydrogen/electrolysis/pem/documentation/electrolysis_pem_disc.markdown @@ -32,7 +32,7 @@ PEM electrolysers need expensive noble metals (platinum, iridium) which makes th PEM electrolysers are not yet fully developped but Buttler [^6] reported around 6MW of PEM electrolysers nominal power around the world in 2017. With new project emerging, the nominal power of PEM is around 50MW in 2021 (a new 10MW hydrogen electrolysis plant, the largest of its kind in Europe operates in 2020[^7] and another 20 MW, the largest of its kind in the world, will start operating in 2021 in Quebec (Canada) [^10] ) leading to a global hydrogen production of 0.4TWh per year. Public investment in Europe for electrolysers is handled by the Fuel Cell and Hydrogen Joint Undertaking (FCH-JU) organism [^8].In 2019, european investments was around 156 MEUR or around 190 MDollars. We assume half of it is dedicated tor PEM. Around 36% of PEM electrolysers is financed by European union worldwide [^9]. Consequently the hypothesis investment in 2019 for PEM is around : -$$\frac{190*100}{2*36}= 263.88 \ MDollars$$ +$$\frac{190*100}{2*36}= 263.88 \ MDollars$$ ## Heat In Electrolysis, heat production assumed the net difference between total electricity consumption and total hydrogen production. diff --git a/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/FORMULA clean.markdown b/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/FORMULA clean.markdown index e3ea2ead8..f17382ed3 100644 --- a/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/FORMULA clean.markdown +++ b/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/FORMULA clean.markdown @@ -89,7 +89,7 @@ $$A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}]+ [Carbon\_dem        if Carbon\_storage > Carbon\_storage\_max : -$$ A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ +$$A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ #### energy_prices: @@ -114,7 +114,7 @@ $$A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}]+ [Carbon\_dem $$\dfrac {\partial X}{\partial invest} =\dfrac {[ \dfrac {\partial H2\_prod}{\partial invest} * H2\_price * A ]}{[H2\_revenue + A ]^2}$$ with: -$$ A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ +$$A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ \ \ \ diff --git a/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/FORMULA_resume.markdown b/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/FORMULA_resume.markdown index 3e2b2e9b3..3be45e5f7 100644 --- a/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/FORMULA_resume.markdown +++ b/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/FORMULA_resume.markdown @@ -1,45 +1,46 @@ ## FORMULA -$$H2_{price}= PC_{cost} * Margin * X $$ +$$H2_{price}= PC_{cost} * Margin * X$$ ### Gradients to compute: - $$\dfrac {\partial H2_{price}}{\partial invest}= Margin * X * \dfrac {\partial PC_{cost}}{\partial invest} - + PC_{cost} * Margin * \dfrac {\partial X}{\partial invest} $$ + $$\dfrac {\partial H2_{price}}{\partial invest}= Margin * X * \dfrac {\partial PC_{cost}}{\partial invest} + + PC_{cost} * Margin * \dfrac {\partial X}{\partial invest}$$ - $$\dfrac {\partial H2_{price}}{\partial energy\_prices}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_prices} - + PC_{cost} * Margin * \dfrac {\partial X}{\partial energy\_prices} $$ + $$\dfrac {\partial H2_{price}}{\partial energy\_prices}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_prices} + + PC_{cost} * Margin * \dfrac {\partial X}{\partial energy\_prices}$$ $$\dfrac {\partial H2_{price}}{\partial energy\_CO2\_emission}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_CO2\_emission} + 0 $$ ### X computation: -$$ X = \dfrac {H2\_revenue}{H2\_revenue - + A + +$$X = \dfrac {H2\_revenue}{H2\_revenue ++ A }$$ with: -if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue$$ +if Carbon\_prod < Carbon\_demand : +$$A = Carbon\_sold\_revenue$$ if Carbon\_prod > Carbon\_demand :        Carbon\_storage = Carbon\_prod - Carbon\_demand -       if Carbon\_storage < Carbon\_storage\_max : -$$ A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] +       if Carbon\_storage < Carbon\_storage\_max : +$$A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] + [Carbon\_demand * (Carbon\_price - \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]$$        if Carbon\_storage > Carbon\_storage\_max : -$$ A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ +$$A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ \ \ ### Gradient computation: #### energy_prices: -$$ \dfrac {\partial X}{\partial energy\_prices} = +$$\dfrac {\partial X}{\partial energy\_prices} = \dfrac { \dfrac {\partial H2\_price}{\partial energy\_prices} * H2\_prod * A @@ -50,24 +51,25 @@ $$ with: -if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue$$ +if Carbon\_prod < Carbon\_demand : +$$A = Carbon\_sold\_revenue$$ if Carbon\_prod > Carbon\_demand :        Carbon\_storage = Carbon\_prod - Carbon\_demand -       if Carbon\_storage < Carbon\_storage\_max : -$$ A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] +       if Carbon\_storage < Carbon\_storage\_max : +$$A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] + [Carbon\_demand * (Carbon\_price - \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]$$ \ -       if Carbon\_storage > Carbon\_storage\_max : +       if Carbon\_storage > Carbon\_storage\_max : -$$ A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ +$$A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ \ \ #### invest: -$$ \dfrac {\partial X}{\partial invest} = + +$$\dfrac {\partial X}{\partial invest} = \dfrac { [ \dfrac {\partial H2\_prod}{\partial invest} * H2\_price * A ] - @@ -79,23 +81,23 @@ $$ with: -if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue$$ -$$ B = Carbon\_price $$ +if Carbon\_prod < Carbon\_demand : +$$A = Carbon\_sold\_revenue$$ +$$B = Carbon\_price$$ if Carbon\_prod > Carbon\_demand :        Carbon\_storage = Carbon\_prod - Carbon\_demand -       if Carbon\_storage < Carbon\_storage\_max : -$$ A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] +       if Carbon\_storage < Carbon\_storage\_max : +$$A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] + [Carbon\_demand * (Carbon\_price - \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]$$ -$$ B = \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol} $$ +$$B = \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol}$$ -       if Carbon\_storage > Carbon\_storage\_max : -$$ A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ -$$ B = 0 $$ +       if Carbon\_storage > Carbon\_storage\_max : +$$A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ +$$B = 0$$ \ \ \ @@ -105,11 +107,11 @@ $$ * $$\dfrac {\partial Carbon\_prod}{\partial invest} = computed\_value2 $$ -* $$\dfrac {\partial PC_{cost}}{\partial invest} = already\_computed\_value 1$$ +* $$\dfrac {\partial PC_{cost}}{\partial invest} = already\_computed\_value 1$$ -* $$\dfrac {\partial PC_{cost}}{\partial energy\_prices} = already\_computed\_value 2$$ +* $$\dfrac {\partial PC_{cost}}{\partial energy\_prices} = already\_computed\_value 2$$ -* $$\dfrac {\partial PC_{cost}}{\partial energy\_CO2\_emission} = already\_computed\_value 3$$ +* $$\dfrac {\partial PC_{cost}}{\partial energy\_CO2\_emission} = already\_computed\_value 3$$ finally, the only gradient to compute is: diff --git a/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/plasma_cracking_disc.markdown b/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/plasma_cracking_disc.markdown index 36db41a99..7f44f77fc 100644 --- a/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/plasma_cracking_disc.markdown +++ b/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/plasma_cracking_disc.markdown @@ -23,39 +23,39 @@ PC_cost : Plasma Cracking cost ### Formula: -$$H2_{price}= PC_{cost} * Margin * X $$ +$$H2_{price}= PC_{cost} * Margin * X$$ -$$H2_{price}= PC_{cost}(invest, energy\_prices,energy\_CO2\_emission) * Margin$$ -$$ * X(invest, energy\_prices, all\_stream\_demand\_ratio, resources\_price) $$ +$$H2_{price}= PC_{cost}(invest, energy\_prices,energy\_CO2\_emission) * Margin$$ +$$* X(invest, energy\_prices, all\_stream\_demand\_ratio, resources\_price)$$ ### Gradients to compute: - $$\dfrac {\partial H2_{price}}{\partial invest}= Margin * X * \dfrac {\partial PC_{cost}}{\partial invest} - + PC_{cost} * Margin * \dfrac {\partial X}{\partial invest} $$ - - $$\dfrac {\partial H2_{price}}{\partial energy\_prices}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_prices} - + PC_{cost} * Margin * \dfrac {\partial X}{\partial energy\_prices} $$ + $$\dfrac {\partial H2_{price}}{\partial invest}= Margin * X * \dfrac {\partial PC_{cost}}{\partial invest} + + PC_{cost} * Margin * \dfrac {\partial X}{\partial invest}$$ - $$\dfrac {\partial H2_{price}}{\partial energy\_CO2\_emission}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_CO2\_emission} - + 0 $$ + $$\dfrac {\partial H2_{price}}{\partial energy\_prices}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_prices} + + PC_{cost} * Margin * \dfrac {\partial X}{\partial energy\_prices}$$ + $$\dfrac {\partial H2_{price}}{\partial energy\_CO2\_emission}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_CO2\_emission} + + 0$$ - $$\dfrac {\partial H2_{price}}{\partial all\_stream\_demand\_ratio}= PC_{cost} * Margin * \dfrac {\partial X}{\partial all\_stream\_demand\_ratio} $$ +$$\dfrac {\partial H2_{price}}{\partial all\_stream\_demand\_ratio}= PC_{cost} * Margin * \dfrac {\partial X}{\partial all\_stream\_demand\_ratio}$$ -$$\dfrac {\partial H2_{price}}{\partial resources\_price}= PC_{cost} * Margin * \dfrac {\partial X}{\partial resources\_price} $$ +$$\dfrac {\partial H2_{price}}{\partial resources\_price}= PC_{cost} * Margin * \dfrac {\partial X}{\partial resources\_price}$$ ### X computation: -$$ X = \dfrac {H2\_revenue}{H2\_revenue - + A + +$$X = \dfrac {H2\_revenue}{H2\_revenue ++ A }$$ with: if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue $$ +$$A = Carbon\_sold\_revenue$$ if Carbon\_prod > Carbon\_demand : @@ -69,7 +69,7 @@ $${\footnotesize A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol} ### energy_prices gradient computation: -$$ \dfrac {\partial X}{\partial energy\_prices} = +$$\dfrac {\partial X}{\partial energy\_prices} = \dfrac { \dfrac {\partial H2\_price}{\partial energy\_prices} * H2\_prod * A @@ -82,7 +82,7 @@ with: if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue$$ +$$A = Carbon\_sold\_revenue$$ if Carbon\_prod > Carbon\_demand : @@ -95,7 +95,7 @@ $${\footnotesize A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol} ### invest gradient computation: -$$ \dfrac {\partial X}{\partial invest} = +$$\dfrac {\partial X}{\partial invest} = \dfrac { [ \dfrac {\partial H2\_prod}{\partial invest} * H2\_price * A ] - @@ -109,9 +109,9 @@ with: if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue$$ +$$A = Carbon\_sold\_revenue$$ -$$ B = Carbon\_price $$ +$$B = Carbon\_price$$ if Carbon\_prod > Carbon\_demand : @@ -120,14 +120,14 @@ if Carbon\_prod > Carbon\_demand : $${\footnotesize A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}]+ [Carbon\_demand * (Carbon\_price - \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]}$$ -$$ B = \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol} $$ +$$B = \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol}$$ \ ### all stream demand ratio computation: -$$ {\footnotesize\dfrac {\partial X}{\partial all\_stream\_demand\_ratio} = +$${\footnotesize\dfrac {\partial X}{\partial all\_stream\_demand\_ratio} = \dfrac { [ \dfrac {\partial H2\_prod}{\partial all\_stream\_demand\_ratio} * H2\_price * A ] - @@ -141,9 +141,9 @@ with: if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue$$ +$$A = Carbon\_sold\_revenue$$ -$$ B = Carbon\_price $$ +$$B = Carbon\_price$$ if Carbon\_prod > Carbon\_demand : @@ -152,12 +152,12 @@ if Carbon\_prod > Carbon\_demand : $${\footnotesize A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}]+ [Carbon\_demand * (Carbon\_price - \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]}$$ -$$ B = \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol} $$ +$$B = \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol}$$ ### resources price computation: -$$ {\footnotesize\dfrac {\partial X}{\partial resources\_price} = +$${\footnotesize\dfrac {\partial X}{\partial resources\_price} = \dfrac { - [\dfrac {\partial Carbon\_price} {\partial resources\_price} * B * @@ -170,9 +170,9 @@ with: if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue$$ +$$A = Carbon\_sold\_revenue$$ -$$ B = Carbon\_sold\_revenue$$ +$$B = Carbon\_sold\_revenue$$ if Carbon\_prod > Carbon\_demand : @@ -181,7 +181,7 @@ if Carbon\_prod > Carbon\_demand : $${\footnotesize A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}]+ [Carbon\_demand * (Carbon\_price - \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]}$$ -$$ B = Carbon\_demand $$ +$$B = Carbon\_demand$$ ## Gradient computation - More details @@ -259,9 +259,9 @@ $$=\dfrac {[ \dfrac {\partial H2\_prod}{\partial invest} * H2\_price * Carbon\_s if Carbon\_prod > Carbon\_demand : -$$ {\scriptsize X = \dfrac {H2\_prod * H2\_price}{[H2\_prod * H2\_price ] + [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}]+ [Carbon\_demand * (Carbon\_price- \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]} }$$ +$${\scriptsize X = \dfrac {H2\_prod * H2\_price}{[H2\_prod * H2\_price ] + [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}]+ [Carbon\_demand * (Carbon\_price- \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]} }$$ -$$ = \dfrac {H2\_prod * H2\_price}{H2\_revenue + A}$$ +$$= \dfrac {H2\_prod * H2\_price}{H2\_revenue + A}$$ with: @@ -290,4 +290,4 @@ $$=\dfrac {[ \dfrac {\partial H2\_prod}{\partial invest} * H2\_price * A ] - with: -$$ {\small A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}]+ [Carbon\_demand * (Carbon\_price- \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]}$$ +$${\small A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}]+ [Carbon\_demand * (Carbon\_price- \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]}$$ diff --git a/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/plasma_cracking_disc_v2.markdown b/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/plasma_cracking_disc_v2.markdown index f839cbe0b..9c1326f62 100644 --- a/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/plasma_cracking_disc_v2.markdown +++ b/energy_models/models/gaseous_hydrogen/plasma_cracking/documentation/plasma_cracking_disc_v2.markdown @@ -15,53 +15,53 @@ This process allows to extract solid carbon out of methane and if used with biom In order to H2 price via PlasmaCracking technology, it computes: - -$$H2_{price}= PC_{cost} * Margin * X $$ +$$H2_{price}= PC_{cost} * Margin * X$$ ### Gradients to compute: - $$\dfrac {\partial H2_{price}}{\partial invest}= Margin * X * \dfrac {\partial PC_{cost}}{\partial invest} - + PC_{cost} * Margin * \dfrac {\partial X}{\partial invest} $$ + $$\dfrac {\partial H2_{price}}{\partial invest}= Margin * X * \dfrac {\partial PC_{cost}}{\partial invest} + + PC_{cost} * Margin * \dfrac {\partial X}{\partial invest}$$ - $$\dfrac {\partial H2_{price}}{\partial energy\_prices}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_prices} - + PC_{cost} * Margin * \dfrac {\partial X}{\partial energy\_prices} $$ + $$\dfrac {\partial H2_{price}}{\partial energy\_prices}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_prices} + + PC_{cost} * Margin * \dfrac {\partial X}{\partial energy\_prices}$$ - $$\dfrac {\partial H2_{price}}{\partial energy\_CO2\_emission}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_CO2\_emission} - + 0 $$ + $$\dfrac {\partial H2_{price}}{\partial energy\_CO2\_emission}= Margin * X * \dfrac {\partial PC_{cost}}{\partial energy\_CO2\_emission} + + 0$$ ### X computation: -$$ X = \dfrac {H2\_revenue}{H2\_revenue - + A + +$$X = \dfrac {H2\_revenue}{H2\_revenue ++ A }$$ with: if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue$$ +$$A = Carbon\_sold\_revenue$$ if Carbon\_prod > Carbon\_demand :        Carbon\_storage = Carbon\_prod - Carbon\_demand        if Carbon\_storage < Carbon\_storage\_max : - -$$ A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] + +$$A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] + [Carbon\_demand * (Carbon\_price - \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]$$        if Carbon\_storage > Carbon\_storage\_max : -$$ A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ +$$A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ \ \ \ ### energy_prices gradient computation: -$$ \dfrac {\partial X}{\partial energy\_prices} = +$$\dfrac {\partial X}{\partial energy\_prices} = \dfrac { \dfrac {\partial H2\_price}{\partial energy\_prices} * H2\_prod * A @@ -74,7 +74,7 @@ with: if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue$$ +$$A = Carbon\_sold\_revenue$$ if Carbon\_prod > Carbon\_demand : @@ -82,17 +82,18 @@ if Carbon\_prod > Carbon\_demand :        if Carbon\_storage < Carbon\_storage\_max : -$$ A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] +$$A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] + [Carbon\_demand * (Carbon\_price - \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]$$ \ -       if Carbon\_storage > Carbon\_storage\_max : +       if Carbon\_storage > Carbon\_storage\_max : -$$ A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ +$$A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ \ \ ### invest gradient computation: -$$ \dfrac {\partial X}{\partial invest} = + +$$\dfrac {\partial X}{\partial invest} = \dfrac { [ \dfrac {\partial H2\_prod}{\partial invest} * H2\_price * A ] - @@ -106,27 +107,27 @@ with: if Carbon\_prod < Carbon\_demand : -$$ A = Carbon\_sold\_revenue$$ +$$A = Carbon\_sold\_revenue$$ -$$ B = Carbon\_price $$ +$$B = Carbon\_price$$ if Carbon\_prod > Carbon\_demand :        Carbon\_storage = Carbon\_prod - Carbon\_demand        if Carbon\_storage < Carbon\_storage\_max : - -$$ A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] + +$$A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}] + [Carbon\_demand * (Carbon\_price - \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol})]$$ - -$$ B = \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol} $$ + +$$B = \dfrac {Carbon\_mol * CO2\_credit}{CO2\_mol}$$        if Carbon\_storage > Carbon\_storage\_max : -$$ A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ +$$A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ -$$ B = 0 $$ +$$B = 0$$ \ \ \ @@ -221,7 +222,7 @@ $$A = [\dfrac {Carbon\_prod* Carbon\_mol * CO2\_credit}{CO2\_mol}]+ [Carbon\_dem        if Carbon\_storage > Carbon\_storage\_max : -$$ A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ +$$A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ #### energy_prices: @@ -250,7 +251,7 @@ $$\dfrac {\partial X}{\partial invest} =\dfrac {[ \dfrac {\partial H2\_prod}{\pa with: -$$ A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ +$$A = [Carbon\_demand * Carbon\_price]+ [\dfrac {(Carbon\_storage\_max)* Carbon\_mol * CO2\_credit}{CO2\_mol}]$$ \ \ \ \ No newline at end of file diff --git a/energy_models/models/gaseous_hydrogen/water_gas_shift/documentation/water_gas_shift_disc.markdown b/energy_models/models/gaseous_hydrogen/water_gas_shift/documentation/water_gas_shift_disc.markdown index 264e694dd..595b5c10e 100644 --- a/energy_models/models/gaseous_hydrogen/water_gas_shift/documentation/water_gas_shift_disc.markdown +++ b/energy_models/models/gaseous_hydrogen/water_gas_shift/documentation/water_gas_shift_disc.markdown @@ -23,15 +23,15 @@ $$(H_2 +r_1 CO) + cH_20 --> dCO_2 + e(H_2 +r_2CO)$$ with $r_1$ and $r_2$ syngas ratios before and after the reaction : -$$ r_i = \frac{mol CO}{mol H2}$$ +$$r_i = \frac{mol CO}{mol H2}$$ and with $c$,$d$ and $e$ coefficients of the reaction that can be computed with $r_1$ and $r_2$ to satisfy chemical equilibrium : -$$ c = \frac{r1-r2}{1+r2}$$ +$$c = \frac{r1-r2}{1+r2}$$ -$$ d = r1 - \frac{r2(1+r1)}{1+r2}$$ +$$d = r1 - \frac{r2(1+r1)}{1+r2}$$ -$$ e = \frac{1+r1}{1+r2}$$ +$$e = \frac{1+r1}{1+r2}$$ ## Data diff --git a/energy_models/models/liquid_fuel/fischer_tropsch/documentation/fischer_tropsch_disc.markdown b/energy_models/models/liquid_fuel/fischer_tropsch/documentation/fischer_tropsch_disc.markdown index 16260de93..8f9baf09e 100644 --- a/energy_models/models/liquid_fuel/fischer_tropsch/documentation/fischer_tropsch_disc.markdown +++ b/energy_models/models/liquid_fuel/fischer_tropsch/documentation/fischer_tropsch_disc.markdown @@ -5,7 +5,7 @@ ## The Fischer Tropsch Reaction The Fischer-Tropsch process is used to generate high carbon chain up to synthetic fuel and water wi th $n$ the carbon molecular number of the wanted synthetic fuel. -$$(2n + 1) H_2 + n CO --> C_nH_{2n+2} + nH_2O$$ (2) +$$(2n + 1) H_2 + n CO --> C_nH_{2n+2} + nH_2O$$(2) These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The process was first developed by Franz Fischer and Hans Tropsch in 1925.[^1] @@ -39,7 +39,7 @@ The first PtL (Power to Liquid with Electrolysis) demo plant at industrial scale ## Modifying the syngas ratio for the synthesis The ratio $\frac{CO}{H_2}$ of the needed syngas (gas composed of carbon monoxyde $CO$ and hydrogen $H_2$) must be equal to : -$$ r_{syngas} = \frac{n}{2n+1}$$ +$$r_{syngas} = \frac{n}{2n+1}$$ Depending on the syngas production technology, the syngas ratio of $CO$ over $H_2$ can be different. If the ratio of input syngas is lower than $\frac{n}{2n+1}$ we need to enrich the syngas with carbon monoxyde. If the syngas ratio is higher, some CO in the syngas must be removed. @@ -48,19 +48,19 @@ If the syngas ratio is higher, some CO in the syngas must be removed. The Reverse Water Gas Shift reaction is able to enrich a syngas mixture using carbon dioxyde ($CO_2$) : -$$dCO_2 + e(H_2 +r_1CO) --> (H_2 +r_2 CO) + cH_20 $$ +$$dCO_2 + e(H_2 +r_1CO) --> (H_2 +r_2 CO) + cH_20$$ with $r_1r_2$ syngas ratios before and after the reaction : and with $c$, $d$ and $e$ coefficients of the reaction that can be computed with $r_1$ and $r_2$ to satisfy chemical equilibrium : -$$ c = \frac{r1-r2}{1+r2}$$ +$$c = \frac{r1-r2}{1+r2}$$ -$$ d = r1 - \frac{r2(1+r1)}{1+r2}$$ +$$d = r1 - \frac{r2(1+r1)}{1+r2}$$ -$$ e = \frac{1+r1}{1+r2}$$ +$$e = \frac{1+r1}{1+r2}$$ In our context, we know the value of $r_2= \frac{n}{2n+1}$ with $n=12$ which is a valid assumption for kerosene jet fuel (between 10 and 16 carbon atoms by moles). diff --git a/energy_models/models/methane/upgrading_biogas/documentation/upgrading_biogas_disc.markdown b/energy_models/models/methane/upgrading_biogas/documentation/upgrading_biogas_disc.markdown index 5db391ee9..296c4db8b 100644 --- a/energy_models/models/methane/upgrading_biogas/documentation/upgrading_biogas_disc.markdown +++ b/energy_models/models/methane/upgrading_biogas/documentation/upgrading_biogas_disc.markdown @@ -12,7 +12,7 @@ There are many amine chemicals that dissolve into water as a solvent for biogas The reaction between MEA and CO2 is an exothermic reaction; for each mole of CO2 absorbed in MEA solution, 72kJ of thermal energy is released. -$$ 2(OH - 2CH_2 - NH_2) + CO_2 <--> (OH) - (CH_2)_2 - NHCOO- + OH - (CH_2)_2 - NH_3$$ +$$2(OH - 2CH_2 - NH_2) + CO_2 <--> (OH) - (CH_2)_2 - NHCOO- + OH - (CH_2)_2 - NH_3$$ $$2(OH - (CH_2)_2 - NH_2) + H_2S <--> (HOCH_2CH_2NH_3)_2S$$ $$(HOCH_2CH_2NH_3)_2S + H_2S <-->2HOCH_2CH_2NH_3HS$$ diff --git a/energy_models/models/solid_fuel/coal_extraction/documentation/coal_extraction_disc.markdown b/energy_models/models/solid_fuel/coal_extraction/documentation/coal_extraction_disc.markdown index f7e61966c..a9b121661 100644 --- a/energy_models/models/solid_fuel/coal_extraction/documentation/coal_extraction_disc.markdown +++ b/energy_models/models/solid_fuel/coal_extraction/documentation/coal_extraction_disc.markdown @@ -35,11 +35,11 @@ The emission of methane is a big issue for coal extraction mines. A lot of metha The Model for Calculating Coal Mine Methane (MC2M) developed by [^4] and used by IPCC models computed the annual CH4 emissions from coal mines with the equation : -$$CH4\_emissions (m^3) = coal\_production (t) *gas\_content(mine\_depth,coal\_type)*ef\_coefficient$$ +$$CH4\_emissions (m^3) = coal\_production (t) *gas\_content(mine\_depth,coal\_type)*ef\_coefficient$$ with $ef\_coefficient$ the emission factor coefficient equals to 1.7 in [^4] ans 1.6 in the Global Coal Mine Tracker [^6] and gas\_content(mine\_depth,coal\_type) the equivalent of CH4 emissions per ton of coal mined in $m^3/t$ : -$$ gas\_content(mine\_depth,coal\_type) = \frac{VL_{coal} depth}{PL_{coal}+depth}$$ +$$gas\_content(mine\_depth,coal\_type) = \frac{VL_{coal} depth}{PL_{coal}+depth}$$ with $VL_{coal}$ and $PL_{coal}$ the Langmuir volume and pressure of the coal type (different for anthracite or subbituminous). diff --git a/energy_models/models/solid_fuel/pelletizing/documentation/pelletizing_disc.markdown b/energy_models/models/solid_fuel/pelletizing/documentation/pelletizing_disc.markdown index ca718d7d0..8c008e02e 100644 --- a/energy_models/models/solid_fuel/pelletizing/documentation/pelletizing_disc.markdown +++ b/energy_models/models/solid_fuel/pelletizing/documentation/pelletizing_disc.markdown @@ -35,7 +35,7 @@ The resources needed to produce pellets are raw biomass and electricity (for chi The quantity of raw biomass depends on the moisture content of the biomass and the produced pellets following this formula: -$$ Q_{ty biomass}=\frac{(1+m_{biomass})}{(1+m_{pellets})}Q_{ty pellets}$$ +$$Q_{ty biomass}=\frac{(1+m_{biomass})}{(1+m_{pellets})}Q_{ty pellets}$$ An average value of the moisture content has been taken at 30% for the biomass and 8% for the pellets. diff --git a/energy_models/models/syngas/autothermal_reforming/documentation/autothermal_reforming_disc.markdown b/energy_models/models/syngas/autothermal_reforming/documentation/autothermal_reforming_disc.markdown index 02bb6081c..87f7f1457 100644 --- a/energy_models/models/syngas/autothermal_reforming/documentation/autothermal_reforming_disc.markdown +++ b/energy_models/models/syngas/autothermal_reforming/documentation/autothermal_reforming_disc.markdown @@ -2,7 +2,7 @@ Autothermal reforming uses CO_2 and oxygen in a reaction with methane to form syngas. The reaction takes place in a single chamber where the methane is partially oxidized. The reaction is exothermic due to the oxidation. -$$ 2CH_4 + O_2 + CO_2 --> 3CO + H_2O + 3H_2 $$ +$$2CH_4 + O_2 + CO_2 --> 3CO + H_2O + 3H_2$$ The syngas produced ratio of H2:CO is 1:1. diff --git a/energy_models/models/syngas/biomass_gasification/documentation/biomass_gasification_disc.markdown b/energy_models/models/syngas/biomass_gasification/documentation/biomass_gasification_disc.markdown index 46212fad3..95aecd749 100644 --- a/energy_models/models/syngas/biomass_gasification/documentation/biomass_gasification_disc.markdown +++ b/energy_models/models/syngas/biomass_gasification/documentation/biomass_gasification_disc.markdown @@ -12,13 +12,13 @@ The selection of the gasifier type depends on the raw material. Various gasifica Produced syngas followed the below formula and consist in a primarily mixture of carbon monoxide and hydrogen : -$$ Biomass(CH_aO_bN_cS_d) + O_2 --> CO_2$$ -$$ Biomass(CH_aO_bN_cS_d) + CO_2 --> 2CO$$ -$$ Biomass(CH_aO_bN_cS_d) + H_20 --> CO + H_2$$ +$$Biomass(CH_aO_bN_cS_d) + O_2 --> CO_2$$ +$$Biomass(CH_aO_bN_cS_d) + CO_2 --> 2CO$$ +$$Biomass(CH_aO_bN_cS_d) + H_20 --> CO + H_2$$ then when aggregate -$$ Biomass(CH_aO_bN_cS_d) + O_2 + H_2O --> CO + CO_2 + H_2 + other species$$ +$$Biomass(CH_aO_bN_cS_d) + O_2 + H_2O --> CO + CO_2 + H_2 + other species$$ (other species => $N_2$, $H_2S$ less than 0.3 Mole Frac(%)) diff --git a/energy_models/models/syngas/co_electrolysis/documentation/co_electrolysis_disc.markdown b/energy_models/models/syngas/co_electrolysis/documentation/co_electrolysis_disc.markdown index bad15ac81..97d06c18e 100644 --- a/energy_models/models/syngas/co_electrolysis/documentation/co_electrolysis_disc.markdown +++ b/energy_models/models/syngas/co_electrolysis/documentation/co_electrolysis_disc.markdown @@ -2,13 +2,13 @@ High temperature co-electrolysis is a process which electro-chemically reduces H2O and CO2 using solid oxide electrolyzer cell via the reactions in the equations : -$$ H_2O -> H2 + 1/2 O_2 $$ +$$H_2O -> H2 + 1/2 O_2$$ -$$ CO_2 -> CO + 1/2 O_2 $$ +$$CO_2 -> CO + 1/2 O_2$$ Total reaction is : -$$ H_2O + CO_2 -> H2 + CO + O_2 $$ +$$H_2O + CO_2 -> H2 + CO + O_2$$ ![](coelectrolysis.jpg) diff --git a/energy_models/models/syngas/coal_gasification/documentation/coal_gasification_disc.markdown b/energy_models/models/syngas/coal_gasification/documentation/coal_gasification_disc.markdown index 7ff6a96e7..3f2696b8c 100644 --- a/energy_models/models/syngas/coal_gasification/documentation/coal_gasification_disc.markdown +++ b/energy_models/models/syngas/coal_gasification/documentation/coal_gasification_disc.markdown @@ -3,7 +3,7 @@ ## Definition Coal gasification is the process of producing syngas from coal,water and oxygen. During gasification, the coal is blown through with oxygen and water vapor : -$$ 3C(coal) + O_2 + H_2O \rightarrow H_2 + 3CO$$ +$$3C(coal) + O_2 + H_2O \rightarrow H_2 + 3CO$$ If the refiner wants to produce liquid fuels, the coal gas is collected at this state and routed to a Fischer–Tropsch reactor. If, however, hydrogen is the desired end-product, the coal gas (primarily the CO product) undergoes the water gas shift reaction. @@ -15,7 +15,7 @@ The two main applications of coal gasification are to produce energy (hydrogen w In industry, syngas from coal gasification is used to transform iron oxides extracted from iron mines into iron ore using the Direct Reduced Iron (DRI) technology : - $$ 2FeO + (CO + H_2) \rightarrow 2Fe + CO_2 + H_2O $$ +$$2FeO + (CO + H_2) \rightarrow 2Fe + CO_2 + H_2O$$ IEA website reports a coal consumption of 3333 TWh for other transformation [^3] (includes Hydrogen and DRI) and 264.72 TWh for liquefaction plants. diff --git a/energy_models/tests/jacobian_pkls/jacobian_hydrogen_WGS.pkl b/energy_models/tests/jacobian_pkls/jacobian_hydrogen_WGS.pkl index 6a080af8f..59041b2d3 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_hydrogen_WGS.pkl and b/energy_models/tests/jacobian_pkls/jacobian_hydrogen_WGS.pkl differ diff --git a/energy_models/tests/jacobian_pkls/jacobian_ratio_CoalExtraction.pkl b/energy_models/tests/jacobian_pkls/jacobian_ratio_CoalExtraction.pkl index 08a69ac2b..931bc3384 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_ratio_CoalExtraction.pkl and b/energy_models/tests/jacobian_pkls/jacobian_ratio_CoalExtraction.pkl differ diff --git a/energy_models/tests/jacobian_pkls/jacobian_ratio_Electrolysis.PEM.pkl b/energy_models/tests/jacobian_pkls/jacobian_ratio_Electrolysis.PEM.pkl index 069710d71..a064efdf3 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_ratio_Electrolysis.PEM.pkl and b/energy_models/tests/jacobian_pkls/jacobian_ratio_Electrolysis.PEM.pkl differ diff --git a/energy_models/tests/jacobian_pkls/jacobian_ratio_FischerTropsch.pkl b/energy_models/tests/jacobian_pkls/jacobian_ratio_FischerTropsch.pkl index b5369ff39..92d29f6bd 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_ratio_FischerTropsch.pkl and b/energy_models/tests/jacobian_pkls/jacobian_ratio_FischerTropsch.pkl differ diff --git a/energy_models/tests/jacobian_pkls/jacobian_ratio_FossilGas.pkl b/energy_models/tests/jacobian_pkls/jacobian_ratio_FossilGas.pkl index 1984f730f..a899abdd5 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_ratio_FossilGas.pkl and b/energy_models/tests/jacobian_pkls/jacobian_ratio_FossilGas.pkl differ diff --git a/energy_models/tests/jacobian_pkls/jacobian_ratio_HydrogenLiquefaction.pkl b/energy_models/tests/jacobian_pkls/jacobian_ratio_HydrogenLiquefaction.pkl index 0f665f320..b8e12b5e5 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_ratio_HydrogenLiquefaction.pkl and b/energy_models/tests/jacobian_pkls/jacobian_ratio_HydrogenLiquefaction.pkl differ diff --git a/energy_models/tests/jacobian_pkls/jacobian_ratio_Nuclear.pkl b/energy_models/tests/jacobian_pkls/jacobian_ratio_Nuclear.pkl index 14e41e965..55744edc5 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_ratio_Nuclear.pkl and b/energy_models/tests/jacobian_pkls/jacobian_ratio_Nuclear.pkl differ diff --git a/energy_models/tests/jacobian_pkls/jacobian_ratio_Refinery.pkl b/energy_models/tests/jacobian_pkls/jacobian_ratio_Refinery.pkl index 0b7f76321..9a351529a 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_ratio_Refinery.pkl and b/energy_models/tests/jacobian_pkls/jacobian_ratio_Refinery.pkl differ diff --git a/energy_models/tests/jacobian_pkls/jacobian_ratio_SMR.pkl b/energy_models/tests/jacobian_pkls/jacobian_ratio_SMR.pkl index 8626dd967..77498aa94 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_ratio_SMR.pkl and b/energy_models/tests/jacobian_pkls/jacobian_ratio_SMR.pkl differ diff --git a/energy_models/tests/jacobian_pkls/jacobian_ratio_WaterGasShift.pkl b/energy_models/tests/jacobian_pkls/jacobian_ratio_WaterGasShift.pkl index f26687c6f..62f5a5997 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_ratio_WaterGasShift.pkl and b/energy_models/tests/jacobian_pkls/jacobian_ratio_WaterGasShift.pkl differ diff --git a/energy_models/tests/jacobian_pkls/jacobian_ratio_hydrogen.gaseous_hydrogen.pkl b/energy_models/tests/jacobian_pkls/jacobian_ratio_hydrogen.gaseous_hydrogen.pkl index 0b1aa2360..fb5f18722 100644 Binary files a/energy_models/tests/jacobian_pkls/jacobian_ratio_hydrogen.gaseous_hydrogen.pkl and b/energy_models/tests/jacobian_pkls/jacobian_ratio_hydrogen.gaseous_hydrogen.pkl differ