-
Notifications
You must be signed in to change notification settings - Fork 904
/
Copy pathexample_19-03.cpp
305 lines (281 loc) · 10.5 KB
/
example_19-03.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
// Example 19-3. Stereo calibration, rectification, and correspondence
#pragma warning(disable : 4996)
#include <opencv2/opencv.hpp>
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
using namespace std;
void help(char *argv[]) {
cout
<< "\n\nExample 19-3. Stereo calibration, rectification, and "
"correspondence"
<< "\n Reads in list of locations of a sequence of checkerboard "
"calibration"
<< "\n objects from a left,right stereo camera pair. Calibrates, "
"rectifies and then"
<< "\n does stereo correspondence."
<< "\n"
<< "\n This program will run on default parameters assuming you "
"created a build directory"
<< "\n directly below the Learning-OpenCV-3 directory and are "
"running programs there. NOTE: the list_of_stereo_pairs> must"
<< "\n give the full path name to the left right images, in "
"alternating"
<< "\n lines: left image, right image, one path/filename per line, see"
<< "\n stereoData/example_19-03_list.txt file, you can comment out "
"lines"
<< "\n there by starting them with #."
<< "\n"
<< "\nDefault Call (with parameters: board_w = 9, board_h = 6, list = "
"../stereoData_19-03_list.txt):"
<< "\n" << argv[0] << "\n"
<< "\nManual call:"
<< "\n" << argv[0] << " [<board_w> <board_h> <path/list_of_stereo_pairs>]"
<< "\n\n PRESS ANY KEY TO STEP THROUGH RESULTS AT EACH STAGE."
<< "\n" << endl;
}
static void StereoCalib(const char *imageList, int nx, int ny,
bool useUncalibrated) {
bool displayCorners = true;
bool showUndistorted = true;
bool isVerticalStereo = false; // horiz or vert cams
const int maxScale = 1;
const float squareSize = 1.f;
// actual square size
FILE *f = fopen(imageList, "rt");
int i, j, lr;
int N = nx * ny;
cv::Size board_sz = cv::Size(nx, ny);
vector<string> imageNames[2];
vector<cv::Point3f> boardModel;
vector<vector<cv::Point3f> > objectPoints;
vector<vector<cv::Point2f> > points[2];
vector<cv::Point2f> corners[2];
bool found[2] = {false, false};
cv::Size imageSize;
// READ IN THE LIST OF CIRCLE GRIDS:
//
if (!f) {
cout << "Cannot open file " << imageList << endl;
return;
}
for (i = 0; i < ny; i++)
for (j = 0; j < nx; j++)
boardModel.push_back(
cv::Point3f((float)(i * squareSize), (float)(j * squareSize), 0.f));
i = 0;
for (;;) {
char buf[1024];
lr = i % 2;
if (lr == 0)
found[0] = found[1] = false;
if (!fgets(buf, sizeof(buf) - 3, f))
break;
size_t len = strlen(buf);
while (len > 0 && isspace(buf[len - 1]))
buf[--len] = '\0';
if (buf[0] == '#')
continue;
cv::Mat img = cv::imread(buf, 0);
if (img.empty())
break;
imageSize = img.size();
imageNames[lr].push_back(buf);
i++;
// If we did not find board on the left image,
// it does not make sense to find it on the right.
//
if (lr == 1 && !found[0])
continue;
// Find circle grids and centers therein:
for (int s = 1; s <= maxScale; s++) {
cv::Mat timg = img;
if (s > 1)
resize(img, timg, cv::Size(), s, s, cv::INTER_CUBIC);
// Just as example, this would be the call if you had circle calibration
// boards ...
// found[lr] = cv::findCirclesGrid(timg, cv::Size(nx, ny),
// corners[lr],
// cv::CALIB_CB_ASYMMETRIC_GRID |
// cv::CALIB_CB_CLUSTERING);
//...but we have chessboards in our images
found[lr] = cv::findChessboardCorners(timg, board_sz, corners[lr]);
if (found[lr] || s == maxScale) {
cv::Mat mcorners(corners[lr]);
mcorners *= (1. / s);
}
if (found[lr])
break;
}
if (displayCorners) {
cout << buf << endl;
cv::Mat cimg;
cv::cvtColor(img, cimg, cv::COLOR_GRAY2BGR);
// draw chessboard corners works for circle grids too
cv::drawChessboardCorners(cimg, cv::Size(nx, ny), corners[lr], found[lr]);
cv::imshow("Corners", cimg);
if ((cv::waitKey(0) & 255) == 27) // Allow ESC to quit
exit(-1);
} else
cout << '.';
if (lr == 1 && found[0] && found[1]) {
objectPoints.push_back(boardModel);
points[0].push_back(corners[0]);
points[1].push_back(corners[1]);
}
}
fclose(f);
// CALIBRATE THE STEREO CAMERAS
cv::Mat M1 = cv::Mat::eye(3, 3, CV_64F);
cv::Mat M2 = cv::Mat::eye(3, 3, CV_64F);
cv::Mat D1, D2, R, T, E, F;
cout << "\nRunning stereo calibration ...\n";
cv::stereoCalibrate(
objectPoints, points[0], points[1], M1, D1, M2, D2, imageSize, R, T, E, F,
cv::CALIB_FIX_ASPECT_RATIO | cv::CALIB_ZERO_TANGENT_DIST |
cv::CALIB_SAME_FOCAL_LENGTH,
cv::TermCriteria(cv::TermCriteria::COUNT | cv::TermCriteria::EPS, 100,
1e-5));
cout << "Done! Press any key to step through images, ESC to exit\n\n";
// CALIBRATION QUALITY CHECK
// because the output fundamental matrix implicitly
// includes all the output information,
// we can check the quality of calibration using the
// epipolar geometry constraint: m2^t*F*m1=0
vector<cv::Point3f> lines[2];
double avgErr = 0;
int nframes = (int)objectPoints.size();
for (i = 0; i < nframes; i++) {
vector<cv::Point2f> &pt0 = points[0][i];
vector<cv::Point2f> &pt1 = points[1][i];
cv::undistortPoints(pt0, pt0, M1, D1, cv::Mat(), M1);
cv::undistortPoints(pt1, pt1, M2, D2, cv::Mat(), M2);
cv::computeCorrespondEpilines(pt0, 1, F, lines[0]);
cv::computeCorrespondEpilines(pt1, 2, F, lines[1]);
for (j = 0; j < N; j++) {
double err = fabs(pt0[j].x * lines[1][j].x + pt0[j].y * lines[1][j].y +
lines[1][j].z) +
fabs(pt1[j].x * lines[0][j].x + pt1[j].y * lines[0][j].y +
lines[0][j].z);
avgErr += err;
}
}
cout << "avg err = " << avgErr / (nframes * N) << endl;
// COMPUTE AND DISPLAY RECTIFICATION
//
if (showUndistorted) {
cv::Mat R1, R2, P1, P2, map11, map12, map21, map22;
// IF BY CALIBRATED (BOUGUET'S METHOD)
//
if (!useUncalibrated) {
stereoRectify(M1, D1, M2, D2, imageSize, R, T, R1, R2, P1, P2,
cv::noArray(), 0);
isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));
// Precompute maps for cvRemap()
initUndistortRectifyMap(M1, D1, R1, P1, imageSize, CV_16SC2, map11,
map12);
initUndistortRectifyMap(M2, D2, R2, P2, imageSize, CV_16SC2, map21,
map22);
}
// OR ELSE HARTLEY'S METHOD
//
else {
// use intrinsic parameters of each camera, but
// compute the rectification transformation directly
// from the fundamental matrix
vector<cv::Point2f> allpoints[2];
for (i = 0; i < nframes; i++) {
copy(points[0][i].begin(), points[0][i].end(),
back_inserter(allpoints[0]));
copy(points[1][i].begin(), points[1][i].end(),
back_inserter(allpoints[1]));
}
cv::Mat F = findFundamentalMat(allpoints[0], allpoints[1], cv::FM_8POINT);
cv::Mat H1, H2;
cv::stereoRectifyUncalibrated(allpoints[0], allpoints[1], F, imageSize,
H1, H2, 3);
R1 = M1.inv() * H1 * M1;
R2 = M2.inv() * H2 * M2;
// Precompute map for cvRemap()
//
cv::initUndistortRectifyMap(M1, D1, R1, P1, imageSize, CV_16SC2, map11,
map12);
cv::initUndistortRectifyMap(M2, D2, R2, P2, imageSize, CV_16SC2, map21,
map22);
}
// RECTIFY THE IMAGES AND FIND DISPARITY MAPS
//
cv::Mat pair;
if (!isVerticalStereo)
pair.create(imageSize.height, imageSize.width * 2, CV_8UC3);
else
pair.create(imageSize.height * 2, imageSize.width, CV_8UC3);
// Setup for finding stereo corrrespondences
//
cv::Ptr<cv::StereoSGBM> stereo = cv::StereoSGBM::create(
-64, 128, 11, 100, 1000, 32, 0, 15, 1000, 16, cv::StereoSGBM::MODE_HH);
for (i = 0; i < nframes; i++) {
cv::Mat img1 = cv::imread(imageNames[0][i].c_str(), 0);
cv::Mat img2 = cv::imread(imageNames[1][i].c_str(), 0);
cv::Mat img1r, img2r, disp, vdisp;
if (img1.empty() || img2.empty())
continue;
cv::remap(img1, img1r, map11, map12, cv::INTER_LINEAR);
cv::remap(img2, img2r, map21, map22, cv::INTER_LINEAR);
if (!isVerticalStereo || !useUncalibrated) {
// When the stereo camera is oriented vertically,
// Hartley method does not transpose the
// image, so the epipolar lines in the rectified
// images are vertical. Stereo correspondence
// function does not support such a case.
stereo->compute(img1r, img2r, disp);
cv::normalize(disp, vdisp, 0, 256, cv::NORM_MINMAX, CV_8U);
cv::imshow("disparity", vdisp);
}
if (!isVerticalStereo) {
cv::Mat part = pair.colRange(0, imageSize.width);
cvtColor(img1r, part, cv::COLOR_GRAY2BGR);
part = pair.colRange(imageSize.width, imageSize.width * 2);
cvtColor(img2r, part, cv::COLOR_GRAY2BGR);
for (j = 0; j < imageSize.height; j += 16)
cv::line(pair, cv::Point(0, j), cv::Point(imageSize.width * 2, j),
cv::Scalar(0, 255, 0));
} else {
cv::Mat part = pair.rowRange(0, imageSize.height);
cv::cvtColor(img1r, part, cv::COLOR_GRAY2BGR);
part = pair.rowRange(imageSize.height, imageSize.height * 2);
cv::cvtColor(img2r, part, cv::COLOR_GRAY2BGR);
for (j = 0; j < imageSize.width; j += 16)
line(pair, cv::Point(j, 0), cv::Point(j, imageSize.height * 2),
cv::Scalar(0, 255, 0));
}
cv::imshow("rectified", pair);
if ((cv::waitKey() & 255) == 27)
break;
}
}
}
//
//Default Call (with parameters: board_w = 9, board_h = 6, list =
// ../stereoData_19-03_list.txt):
//./example_19-03
//
//Manual call:
//./example_19-03 [<board_w> <board_h> <path/list_of_stereo_pairs>]
//
// Press any key to step through results, ESC to exit
//
int main(int argc, char **argv) {
help(argv);
int board_w = 9, board_h = 6;
const char *board_list = "../stereoData/example_19-03_list.txt";
if (argc == 4) {
board_list = argv[1];
board_w = atoi(argv[2]);
board_h = atoi(argv[3]);
}
StereoCalib(board_list, board_w, board_h, true);
return 0;
}