forked from OskarLinde/scad-utils
-
Notifications
You must be signed in to change notification settings - Fork 48
/
so3.scad
82 lines (65 loc) · 2.57 KB
/
so3.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// so3
use <linalg.scad>
function rodrigues_so3_exp(w, A, B) = [
[1.0 - B*(w[1]*w[1] + w[2]*w[2]), B*(w[0]*w[1]) - A*w[2], B*(w[0]*w[2]) + A*w[1]],
[B*(w[0]*w[1]) + A*w[2], 1.0 - B*(w[0]*w[0] + w[2]*w[2]), B*(w[1]*w[2]) - A*w[0]],
[B*(w[0]*w[2]) - A*w[1], B*(w[1]*w[2]) + A*w[0], 1.0 - B*(w[0]*w[0] + w[1]*w[1])]
];
function so3_exp(w) = so3_exp_rad(w/180*PI);
function so3_exp_rad(w) =
combine_so3_exp(w,
w*w < 1e-8
? so3_exp_1(w*w)
: w*w < 1e-6
? so3_exp_2(w*w)
: so3_exp_3(w*w));
function combine_so3_exp(w,AB) = rodrigues_so3_exp(w,AB[0],AB[1]);
// Taylor series expansions close to 0
function so3_exp_1(theta_sq) = [
1 - 1/6*theta_sq,
0.5
];
function so3_exp_2(theta_sq) = [
1.0 - theta_sq * (1.0 - theta_sq/20) / 6,
0.5 - 0.25/6 * theta_sq
];
function so3_exp_3_0(theta_deg, inv_theta) = [
sin(theta_deg) * inv_theta,
(1 - cos(theta_deg)) * (inv_theta * inv_theta)
];
function so3_exp_3(theta_sq) = so3_exp_3_0(sqrt(theta_sq)*180/PI, 1/sqrt(theta_sq));
function rot_axis_part(m) = [m[2][1] - m[1][2], m[0][2] - m[2][0], m[1][0] - m[0][1]]*0.5;
function so3_ln(m) = 180/PI*so3_ln_rad(m);
function so3_ln_rad(m) = so3_ln_0(m,
cos_angle = rot_cos_angle(m),
preliminary_result = rot_axis_part(m));
function so3_ln_0(m, cos_angle, preliminary_result) =
so3_ln_1(m, cos_angle, preliminary_result,
sin_angle_abs = sqrt(preliminary_result*preliminary_result));
function so3_ln_1(m, cos_angle, preliminary_result, sin_angle_abs) =
cos_angle > sqrt(1/2)
? sin_angle_abs > 0
? preliminary_result * asin(sin_angle_abs)*PI/180 / sin_angle_abs
: preliminary_result
: cos_angle > -sqrt(1/2)
? preliminary_result * acos(cos_angle)*PI/180 / sin_angle_abs
: so3_get_symmetric_part_rotation(
preliminary_result,
m,
angle = PI - asin(sin_angle_abs)*PI/180,
d0 = m[0][0] - cos_angle,
d1 = m[1][1] - cos_angle,
d2 = m[2][2] - cos_angle
);
function so3_get_symmetric_part_rotation(preliminary_result, m, angle, d0, d1, d2) =
so3_get_symmetric_part_rotation_0(preliminary_result,angle,so3_largest_column(m, d0, d1, d2));
function so3_get_symmetric_part_rotation_0(preliminary_result, angle, c_max) =
angle * unit(c_max * preliminary_result < 0 ? -c_max : c_max);
function so3_largest_column(m, d0, d1, d2) =
d0*d0 > d1*d1 && d0*d0 > d2*d2
? [d0, (m[1][0]+m[0][1])/2, (m[0][2]+m[2][0])/2]
: d1*d1 > d2*d2
? [(m[1][0]+m[0][1])/2, d1, (m[2][1]+m[1][2])/2]
: [(m[0][2]+m[2][0])/2, (m[2][1]+m[1][2])/2, d2];
__so3_test = [12,-125,110];
echo(UNITTEST_so3=norm(__so3_test-so3_ln(so3_exp(__so3_test))) < 1e-8);