We provide the config files for PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images.
@inproceedings{pymaf2021,
title={PyMAF: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop},
author={Zhang, Hongwen and Tian, Yating and Zhou, Xinchi and Ouyang, Wanli and Liu, Yebin and Wang, Limin and Sun, Zhenan},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
year={2021}
}
@article{pymafx2022,
title={PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images},
author={Zhang, Hongwen and Tian, Yating and Zhang, Yuxiang and Li, Mengcheng and An, Liang and Sun, Zhenan and Liu, Yebin},
journal={arXiv preprint arXiv:2207.06400},
year={2022}
}
-
SMPL v1.0 is used in our experiments.
- Neutral model can be downloaded from SMPLify.
- All body models have to be renamed in
SMPL_{GENDER}.pkl
format.
For example,mv basicModel_neutral_lbs_10_207_0_v1.0.0.pkl SMPL_NEUTRAL.pkl
-
SMPLX v1.1 is used in our experiments.
-
Download smpl_downsampling.npz from
nkolot/GraphCMR
. -
Download mano_downsampling.npz from
microsoft/MeshGraphormer
. -
Download the pre-trained model.
-
Download the
partial_mesh
files from PyMAF-X or use the following script:mkdir mmhuman3d_download cd mmhuman3d_download wget -O mmhuman3d.7z -q https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/mmhuman3d.7z 7za x mmhuman3d.7z cp -r mmhuman3d/data/partial_mesh/ ../data/ cd .. rm -rf mmhuman3d_download
Download the above resources and arrange them in the following file structure:
mmhuman3d
├── mmhuman3d
├── docs
├── tests
├── tools
├── configs
└── data
├── body_models
│ ├── J_regressor_extra.npy
│ ├── smpl_mean_params.npz
│ ├── smpl
│ │ ├── SMPL_FEMALE.pkl
│ │ ├── SMPL_MALE.pkl
│ │ └── SMPL_NEUTRAL.pkl
│ └── smplx
│ ├── smplx_to_smpl.npz
│ └── SMPLX_NEUTRAL.npz
├── partial_mesh
│ └── *_vids.npz.npz
├── pretrained_models
│ └── PyMAF-X_model_checkpoint.pth
├── mano_downsampling.npz
└── smpl_downsampling.npz
By default, we use mmpose to detect 2d keypoints, and you can get the SMPL-X parameters as follow:
python demo/pymafx_estimate_smplx.py \
--input_path demo/resources/multi_person_demo.mp4 \
--output_path output \
--visualization
If you want to reproduce the original repos, please install openpifpaf, then you will get the SMPL-X parameters as follow:
python demo/pymafx_estimate_smplx.py \
--input_path demo/resources/multi_person_demo.mp4 \
--output_path output \
--visualization \
--use_openpifpaf
You can find results in output
.