We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I want to use faster-rcnn to do object detection instead of mask rcnn for splitting, now it always shows insufficient video memory, in fact my video memory still has space, maybe there is a problem with my base configuration file? Here's my full profile auto_scale_lr = dict(base_batch_size=2) backbone_norm_cfg = dict(requires_grad=True, type='LN') backend_args = None batch_augments = [ dict(pad_mask=True, size=( 512, 512, ), type='BatchFixedSizePad'), ] custom_hooks = [ dict(type='Fp16CompresssionHook'), ] custom_imports = dict(imports=[ 'projects.ViTDet.vitdet', ]) data_root = 'data/coco/' dataset_type = 'CocoDataset' default_hooks = dict( checkpoint=dict( by_epoch=True, interval=1, max_keep_ckpts=5, save_last=True, type='CheckpointHook'), logger=dict(interval=2, type='LoggerHook'), param_scheduler=dict(type='ParamSchedulerHook'), sampler_seed=dict(type='DistSamplerSeedHook'), timer=dict(type='IterTimerHook'), visualization=dict(type='DetVisualizationHook')) default_scope = 'mmdet' dynamic_intervals = [ ( 180001, 184375, ), ] env_cfg = dict( cudnn_benchmark=False, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) image_size = ( 1024, 1024, ) interval = 5000 launcher = 'none' load_from = None log_level = 'INFO' log_processor = dict(by_epoch=False, type='LogProcessor', window_size=50) max_epochs = 20 max_iters = None model = dict( backbone=dict( depth=12, drop_path_rate=0.1, embed_dim=768, img_size=1024, init_cfg=dict( checkpoint='mae_pretrain_vit_base.pth', type='Pretrained'), mlp_ratio=4, norm_cfg=dict(requires_grad=True, type='LN'), num_heads=12, patch_size=16, qkv_bias=True, type='ViT', use_rel_pos=True, window_block_indexes=[ 0, 1, 3, 4, 6, 7, 9, 10, ], window_size=14), data_preprocessor=dict( batch_augments=[ dict(pad_mask=True, size=( 1024, 1024, ), type='BatchFixedSizePad'), ], bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_size_divisor=32, std=[ 58.395, 57.12, 57.375, ], type='DetDataPreprocessor'), neck=dict( backbone_channel=768, in_channels=[ 192, 384, 768, 768, ], norm_cfg=dict(requires_grad=True, type='LN2d'), num_outs=5, out_channels=256, type='SimpleFPN'), roi_head=dict( bbox_head=dict( bbox_coder=dict( target_means=[ 0.0, 0.0, 0.0, 0.0, ], target_stds=[ 0.1, 0.1, 0.2, 0.2, ], type='DeltaXYWHBBoxCoder'), conv_out_channels=256, fc_out_channels=1024, in_channels=256, loss_bbox=dict(loss_weight=1.0, type='L1Loss'), loss_cls=dict( loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='LN2d'), num_classes=4, reg_class_agnostic=False, roi_feat_size=7, type='Shared4Conv1FCBBoxHead'), bbox_roi_extractor=dict( featmap_strides=[ 4, 8, 16, 32, ], out_channels=256, roi_layer=dict(output_size=7, sampling_ratio=0, type='RoIAlign'), type='SingleRoIExtractor'), type='StandardRoIHead'), rpn_head=dict( anchor_generator=dict( ratios=[ 0.5, 1.0, 2.0, ], scales=[ 8, ], strides=[ 4, 8, 16, 32, 64, ], type='AnchorGenerator'), bbox_coder=dict( target_means=[ 0.0, 0.0, 0.0, 0.0, ], target_stds=[ 1.0, 1.0, 1.0, 1.0, ], type='DeltaXYWHBBoxCoder'), feat_channels=256, in_channels=256, loss_bbox=dict(loss_weight=1.0, type='L1Loss'), loss_cls=dict( loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=True), num_convs=2, type='RPNHead'), test_cfg=dict( rcnn=dict( max_per_img=100, nms=dict(iou_threshold=0.5, type='nms'), score_thr=0.05), rpn=dict( max_per_img=1000, min_bbox_size=0, nms=dict(iou_threshold=0.7, type='nms'), nms_pre=1000)), train_cfg=dict( rcnn=dict( assigner=dict( ignore_iof_thr=-1, match_low_quality=False, min_pos_iou=0.5, neg_iou_thr=0.5, pos_iou_thr=0.5, type='MaxIoUAssigner'), debug=False, pos_weight=-1, sampler=dict( add_gt_as_proposals=True, neg_pos_ub=-1, num=512, pos_fraction=0.25, type='RandomSampler')), rpn=dict( allowed_border=-1, assigner=dict( ignore_iof_thr=-1, match_low_quality=True, min_pos_iou=0.3, neg_iou_thr=0.3, pos_iou_thr=0.7, type='MaxIoUAssigner'), debug=False, pos_weight=-1, sampler=dict( add_gt_as_proposals=False, neg_pos_ub=-1, num=256, pos_fraction=0.5, type='RandomSampler')), rpn_proposal=dict( max_per_img=1000, min_bbox_size=0, nms=dict(iou_threshold=0.7, type='nms'), nms_pre=2000)), type='FasterRCNN') norm_cfg = dict(requires_grad=True, type='LN2d') optim_wrapper = dict( constructor='LayerDecayOptimizerConstructor', optimizer=dict( betas=( 0.9, 0.999, ), lr=0.0001, type='AdamW', weight_decay=0.01), paramwise_cfg=dict(decay_rate=0.7, decay_type='layer_wise', num_layers=12), type='AmpOptimWrapper') param_scheduler = [ dict(begin=0, by_epoch=True, end=20, start_factor=0.001, type='LinearLR'), dict( begin=0, by_epoch=True, end=20, gamma=0.1, milestones=[ 15, 18, ], type='MultiStepLR'), ] resume = False test_cfg = dict(type='TestLoop') test_dataloader = dict( batch_size=2, dataset=dict( ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), data_root='data/coco/', pipeline=[ dict(type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 1024, 1024, ), type='Resize'), dict( pad_val=dict(img=( 114, 114, 114, )), size=( 1024, 1024, ), type='Pad'), dict(type='LoadAnnotations', with_bbox=True, with_mask=False), dict( meta_keys=( 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', ), type='PackDetInputs'), ], test_mode=True, type='CocoDataset'), drop_last=False, num_workers=2, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) test_evaluator = dict( ann_file='data/coco/annotations/instances_val2017.json', format_only=False, metric=[ 'bbox', ], type='CocoMetric') train_cfg = dict( dynamic_intervals=[ ( 180001, 184375, ), ], max_epochs=20, type='EpochBasedTrainLoop', val_interval=1) train_dataloader = dict( batch_size=8, dataset=dict( ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), data_root='data/coco/', pipeline=[ dict(type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 1024, 1024, ), type='Resize'), dict( pad_val=dict(img=( 114, 114, 114, )), size=( 1024, 1024, ), type='Pad'), dict(type='LoadAnnotations', with_bbox=True, with_mask=False), dict( meta_keys=( 'img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', ), type='PackDetInputs'), ], test_mode=False, type='CocoDataset'), drop_last=False, num_workers=8, persistent_workers=True, sampler=dict(shuffle=True, type='DefaultSampler')) train_evaluator = dict( ann_file='data/coco/annotations/instances_train2017.json', format_only=False, metric=[ 'bbox', ], type='CocoMetric') work_dir = './work_dirs\faster_vitdet'
The text was updated successfully, but these errors were encountered:
When I use mask-vitdet,mAP shows 0,I hope get some advice.
Sorry, something went wrong.
jbwang1997
No branches or pull requests
I want to use faster-rcnn to do object detection instead of mask rcnn for splitting, now it always shows insufficient video memory, in fact my video memory still has space, maybe there is a problem with my base configuration file? Here's my full profile
auto_scale_lr = dict(base_batch_size=2)
backbone_norm_cfg = dict(requires_grad=True, type='LN')
backend_args = None
batch_augments = [
dict(pad_mask=True, size=(
512,
512,
), type='BatchFixedSizePad'),
]
custom_hooks = [
dict(type='Fp16CompresssionHook'),
]
custom_imports = dict(imports=[
'projects.ViTDet.vitdet',
])
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
default_hooks = dict(
checkpoint=dict(
by_epoch=True,
interval=1,
max_keep_ckpts=5,
save_last=True,
type='CheckpointHook'),
logger=dict(interval=2, type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
timer=dict(type='IterTimerHook'),
visualization=dict(type='DetVisualizationHook'))
default_scope = 'mmdet'
dynamic_intervals = [
(
180001,
184375,
),
]
env_cfg = dict(
cudnn_benchmark=False,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
image_size = (
1024,
1024,
)
interval = 5000
launcher = 'none'
load_from = None
log_level = 'INFO'
log_processor = dict(by_epoch=False, type='LogProcessor', window_size=50)
max_epochs = 20
max_iters = None
model = dict(
backbone=dict(
depth=12,
drop_path_rate=0.1,
embed_dim=768,
img_size=1024,
init_cfg=dict(
checkpoint='mae_pretrain_vit_base.pth', type='Pretrained'),
mlp_ratio=4,
norm_cfg=dict(requires_grad=True, type='LN'),
num_heads=12,
patch_size=16,
qkv_bias=True,
type='ViT',
use_rel_pos=True,
window_block_indexes=[
0,
1,
3,
4,
6,
7,
9,
10,
],
window_size=14),
data_preprocessor=dict(
batch_augments=[
dict(pad_mask=True, size=(
1024,
1024,
), type='BatchFixedSizePad'),
],
bgr_to_rgb=True,
mean=[
123.675,
116.28,
103.53,
],
pad_size_divisor=32,
std=[
58.395,
57.12,
57.375,
],
type='DetDataPreprocessor'),
neck=dict(
backbone_channel=768,
in_channels=[
192,
384,
768,
768,
],
norm_cfg=dict(requires_grad=True, type='LN2d'),
num_outs=5,
out_channels=256,
type='SimpleFPN'),
roi_head=dict(
bbox_head=dict(
bbox_coder=dict(
target_means=[
0.0,
0.0,
0.0,
0.0,
],
target_stds=[
0.1,
0.1,
0.2,
0.2,
],
type='DeltaXYWHBBoxCoder'),
conv_out_channels=256,
fc_out_channels=1024,
in_channels=256,
loss_bbox=dict(loss_weight=1.0, type='L1Loss'),
loss_cls=dict(
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
norm_cfg=dict(requires_grad=True, type='LN2d'),
num_classes=4,
reg_class_agnostic=False,
roi_feat_size=7,
type='Shared4Conv1FCBBoxHead'),
bbox_roi_extractor=dict(
featmap_strides=[
4,
8,
16,
32,
],
out_channels=256,
roi_layer=dict(output_size=7, sampling_ratio=0, type='RoIAlign'),
type='SingleRoIExtractor'),
type='StandardRoIHead'),
rpn_head=dict(
anchor_generator=dict(
ratios=[
0.5,
1.0,
2.0,
],
scales=[
8,
],
strides=[
4,
8,
16,
32,
64,
],
type='AnchorGenerator'),
bbox_coder=dict(
target_means=[
0.0,
0.0,
0.0,
0.0,
],
target_stds=[
1.0,
1.0,
1.0,
1.0,
],
type='DeltaXYWHBBoxCoder'),
feat_channels=256,
in_channels=256,
loss_bbox=dict(loss_weight=1.0, type='L1Loss'),
loss_cls=dict(
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=True),
num_convs=2,
type='RPNHead'),
test_cfg=dict(
rcnn=dict(
max_per_img=100,
nms=dict(iou_threshold=0.5, type='nms'),
score_thr=0.05),
rpn=dict(
max_per_img=1000,
min_bbox_size=0,
nms=dict(iou_threshold=0.7, type='nms'),
nms_pre=1000)),
train_cfg=dict(
rcnn=dict(
assigner=dict(
ignore_iof_thr=-1,
match_low_quality=False,
min_pos_iou=0.5,
neg_iou_thr=0.5,
pos_iou_thr=0.5,
type='MaxIoUAssigner'),
debug=False,
pos_weight=-1,
sampler=dict(
add_gt_as_proposals=True,
neg_pos_ub=-1,
num=512,
pos_fraction=0.25,
type='RandomSampler')),
rpn=dict(
allowed_border=-1,
assigner=dict(
ignore_iof_thr=-1,
match_low_quality=True,
min_pos_iou=0.3,
neg_iou_thr=0.3,
pos_iou_thr=0.7,
type='MaxIoUAssigner'),
debug=False,
pos_weight=-1,
sampler=dict(
add_gt_as_proposals=False,
neg_pos_ub=-1,
num=256,
pos_fraction=0.5,
type='RandomSampler')),
rpn_proposal=dict(
max_per_img=1000,
min_bbox_size=0,
nms=dict(iou_threshold=0.7, type='nms'),
nms_pre=2000)),
type='FasterRCNN')
norm_cfg = dict(requires_grad=True, type='LN2d')
optim_wrapper = dict(
constructor='LayerDecayOptimizerConstructor',
optimizer=dict(
betas=(
0.9,
0.999,
), lr=0.0001, type='AdamW', weight_decay=0.01),
paramwise_cfg=dict(decay_rate=0.7, decay_type='layer_wise', num_layers=12),
type='AmpOptimWrapper')
param_scheduler = [
dict(begin=0, by_epoch=True, end=20, start_factor=0.001, type='LinearLR'),
dict(
begin=0,
by_epoch=True,
end=20,
gamma=0.1,
milestones=[
15,
18,
],
type='MultiStepLR'),
]
resume = False
test_cfg = dict(type='TestLoop')
test_dataloader = dict(
batch_size=2,
dataset=dict(
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
data_root='data/coco/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(keep_ratio=True, scale=(
1024,
1024,
), type='Resize'),
dict(
pad_val=dict(img=(
114,
114,
114,
)),
size=(
1024,
1024,
),
type='Pad'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=False),
dict(
meta_keys=(
'img_id',
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
),
type='PackDetInputs'),
],
test_mode=True,
type='CocoDataset'),
drop_last=False,
num_workers=2,
persistent_workers=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
test_evaluator = dict(
ann_file='data/coco/annotations/instances_val2017.json',
format_only=False,
metric=[
'bbox',
],
type='CocoMetric')
train_cfg = dict(
dynamic_intervals=[
(
180001,
184375,
),
],
max_epochs=20,
type='EpochBasedTrainLoop',
val_interval=1)
train_dataloader = dict(
batch_size=8,
dataset=dict(
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
data_root='data/coco/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(keep_ratio=True, scale=(
1024,
1024,
), type='Resize'),
dict(
pad_val=dict(img=(
114,
114,
114,
)),
size=(
1024,
1024,
),
type='Pad'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=False),
dict(
meta_keys=(
'img_id',
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
),
type='PackDetInputs'),
],
test_mode=False,
type='CocoDataset'),
drop_last=False,
num_workers=8,
persistent_workers=True,
sampler=dict(shuffle=True, type='DefaultSampler'))
train_evaluator = dict(
ann_file='data/coco/annotations/instances_train2017.json',
format_only=False,
metric=[
'bbox',
],
type='CocoMetric')
work_dir = './work_dirs\faster_vitdet'
The text was updated successfully, but these errors were encountered: