Skip to content

Latest commit

 

History

History
51 lines (41 loc) · 1.67 KB

File metadata and controls

51 lines (41 loc) · 1.67 KB

R-CNN ILSVRC13

Model Download Download (with sample test data) ONNX version Opset version
R-CNN ILSVRC13 32 MB 231 MB 1.1 3
R-CNN ILSVRC13 32 MB 231 MB 1.1.2 6
R-CNN ILSVRC13 32 MB 231 MB 1.2 7
R-CNN ILSVRC13 32 MB 231 MB 1.3 8
R-CNN ILSVRC13 32 MB 231 MB 1.4 9

Description

R-CNN is a convolutional neural network for detection. This model was made by transplanting the R-CNN SVM classifiers into a fc-rcnn classification layer.

Paper

Rich feature hierarchies for accurate object detection and semantic segmentation

Dataset

ILSVRC2013

Source

Caffe BVLC R-CNN ILSVRC13 ==> Caffe2 R-CNN ILSVRC13 ==> ONNX R-CNN ILSVRC13

Model input and output

Input

data_0: float[1, 3, 224, 224]

Output

fc-rcnn_1: float[1, 200]

Pre-processing steps

Post-processing steps

Sample test data

random generated sampe test data:

  • test_data_set_0
  • test_data_set_1
  • test_data_set_2
  • test_data_set_3
  • test_data_set_4
  • test_data_set_5

Results/accuracy on test set

On the 200-class ILSVRC2013 detection dataset, R-CNN’s mAP is 31.4%.

License

BSD-3