Skip to content
This repository has been archived by the owner on Oct 13, 2021. It is now read-only.

tensorflow max_pool_with_argmax op does not return indices #699

Open
mpaillassa opened this issue Mar 25, 2021 · 0 comments
Open

tensorflow max_pool_with_argmax op does not return indices #699

mpaillassa opened this issue Mar 25, 2021 · 0 comments

Comments

@mpaillassa
Copy link

mpaillassa commented Mar 25, 2021

Hello, I think there is a bug with the tensorflow max_pool_with_argmax op.
When running the op with onnxruntime, I find that the op returns the pooled values twice instead of the pooled values and the pooled indices. Here is a code reproducing the bug:

import tensorflow as tf
import numpy as np

class Bug(tf.keras.Model):   
    def __init__(self):
        super(Bug, self).__init__()
    def call(self, inputs):
        v, i = tf.nn.max_pool_with_argmax(inputs, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        return tf.cast(i, tf.float32)

b = Bug()
np.random.seed(0)
inp = np.random.uniform(0, 10, (2, 4, 4, 3))
keras_indices = b(inp)

import onnx
import keras2onnx

onnx_model = keras2onnx.convert_keras(b, target_opset=12)
onnx.save_model(onnx_model, "test.onnx")

import onnxruntime as rt

session = rt.InferenceSession("test.onnx")
input, output = session.get_inputs()[0], session.get_outputs()[0]
onnx_indices = session.run([output.name], {input.name: inp.astype(np.float32)})[0]

print(inp[0,:,:,2])
print(onnx_indices[0,:,:,2])

In the end it produces:

[[6.02763376 6.45894113 9.63662761 5.2889492 ]
 [0.71036058 8.32619846 9.78618342 7.80529176]
 [1.43353287 4.1466194  4.56150332 6.17635497]
 [9.43748079 4.37031954 6.66766715 1.28926298]]
[[8.326199  9.786183 ]
 [9.437481  6.6676674]]

Note that I had to cast the resulting indices as float otherwise I get the following error during inference:

FAIL : Load model from test.onnx failed:Type Error: Type (tensor(int64)) of output arg (Identity:0) of node (bug/MaxPoolWithArgmax_transpose_2_1) does not match expected type (tensor(float)).

This was obtained on ubuntu 20.04, with tensorflow 2.4.1, onnx 1.8.1, keras2onnx 1.8.0, onnxruntime 1.7.0, onnxconverter-common 1.8.0.

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant