forked from grame-cncm/faustlibraries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reverbs.lib
940 lines (817 loc) · 40 KB
/
reverbs.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
//#################################### reverbs.lib ########################################
// A library of reverb effects. Its official prefix is `re`.
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/reverbs.lib>
//########################################################################################
ma = library("maths.lib");
ba = library("basics.lib");
de = library("delays.lib");
ro = library("routes.lib");
si = library("signals.lib");
fi = library("filters.lib");
os = library("oscillators.lib");
it = library("interpolators.lib");
ef = library("misceffects.lib");
sp = library("spats.lib");
aa = library("aanl.lib");
declare name "Faust Reverb Library";
declare version "1.3.2";
//########################################################################################
/************************************************************************
FAUST library file, jos section
Except where noted otherwise, The Faust functions below in this
section are Copyright (C) 2003-2017 by Julius O. Smith III <[email protected]>
([jos](http://ccrma.stanford.edu/~jos/)), and released under the
(MIT-style) [STK-4.3](#stk-4.3-license) license.
All MarkDown comments in this section are Copyright 2016-2017 by Romain
Michon and Julius O. Smith III, and are released under the
[CCA4I](https://creativecommons.org/licenses/by/4.0/) license (TODO: if/when Romain agrees!)
************************************************************************/
//=============================Schroeder Reverberators======================================
//==========================================================================================
//------------------------------`(re.)jcrev`------------------------------
// This artificial reverberator take a mono signal and output stereo
// (`satrev`) and quad (`jcrev`). They were implemented by John Chowning
// in the MUS10 computer-music language (descended from Music V by Max
// Mathews). They are Schroeder Reverberators, well tuned for their size.
// Nowadays, the more expensive freeverb is more commonly used (see the
// Faust examples directory).
//
// `jcrev` reverb below was made from a listing of "RV", dated April 14, 1972,
// which was recovered from an old SAIL DART backup tape.
// John Chowning thinks this might be the one that became the
// well known and often copied JCREV.
//
// `jcrev` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : jcrev : _,_,_,_
// ```
//------------------------------------------------------------
jcrev = *(0.06) : allpass_chain <: comb_bank : mix_mtx with {
rev1N = fi.rev1;
rev12(len,g) = rev1N(2048,len,g);
rev14(len,g) = rev1N(4096,len,g);
allpass_chain =
fi.rev2(512,347,0.7) :
fi.rev2(128,113,0.7) :
fi.rev2(64, 37,0.7);
comb_bank =
rev12(1601,.802),
rev12(1867,.773),
rev14(2053,.753),
rev14(2251,.733);
mix_mtx = _,_,_,_ <: psum, -psum, asum, -asum : _,_,_,_ with {
psum = _,_,_,_ :> _;
asum = *(-1),_,*(-1),_ :> _;
};
};
//------------------------------`(re.)satrev`------------------------------
// This artificial reverberator take a mono signal and output stereo
// (`satrev`) and quad (`jcrev`). They were implemented by John Chowning
// in the MUS10 computer-music language (descended from Music V by Max
// Mathews). They are Schroeder Reverberators, well tuned for their size.
// Nowadays, the more expensive freeverb is more commonly used (see the
// Faust examples directory).
//
// `satrev` was made from a listing of "SATREV", dated May 15, 1971,
// which was recovered from an old SAIL DART backup tape.
// John Chowning thinks this might be the one used on his
// often-heard brass canon sound examples, one of which can be found at
// <https://ccrma.stanford.edu/~jos/wav/FM-BrassCanon2.wav>.
//
// #### Usage
//
// ```
// _ : satrev : _,_
// ```
//------------------------------------------------------------
satrev = *(0.2) <: comb_bank :> allpass_chain <: _,*(-1) with {
rev1N = fi.rev1;
rev11(len,g) = rev1N(1024,len,g);
rev12(len,g) = rev1N(2048,len,g);
comb_bank =
rev11(778,.827),
rev11(901,.805),
rev11(1011,.783),
rev12(1123,.764);
rev2N = fi.rev2;
allpass_chain =
rev2N(128,125,0.7) :
rev2N(64, 42,0.7) :
rev2N(16, 12,0.7);
};
//======================Feedback Delay Network (FDN) Reverberators========================
//========================================================================================
//--------------------------------`(re.)fdnrev0`---------------------------------
// Pure Feedback Delay Network Reverberator (generalized for easy scaling).
// `fdnrev0` is a standard Faust function.
//
// #### Usage
//
// ```
// <1,2,4,...,N signals> <:
// fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl) :>
// <1,2,4,...,N signals>
// ```
//
// Where:
//
// * `N`: 2, 4, 8, ... (power of 2)
// * `MAXDELAY`: power of 2 at least as large as longest delay-line length
// * `delays`: N delay lines, N a power of 2, lengths preferably coprime
// * `BBSO`: odd positive integer = order of bandsplit desired at freqs
// * `freqs`: NB-1 crossover frequencies separating desired frequency bands
// * `durs`: NB decay times (t60) desired for the various bands
// * `loopgainmax`: scalar gain between 0 and 1 used to "squelch" the reverb
// * `nonl`: nonlinearity (0 to 0.999..., 0 being linear)
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html>
//------------------------------------------------------------
fdnrev0(MAXDELAY, delays, BBSO, freqs, durs, loopgainmax, nonl)
= (si.bus(2*N) :> si.bus(N) : delaylines(N)) ~
(delayfilters(N,freqs,durs) : feedbackmatrix(N))
with {
N = ba.count(delays);
NB = ba.count(durs);
//assert(count(freqs)+1==NB);
delayval(i) = ba.take(i+1,delays);
dlmax(i) = MAXDELAY; // must hardwire this from argument for now
//dlmax(i) = 2^max(1,nextpow2(delayval(i))) // try when slider min/max is known
// with { nextpow2(x) = ceil(log(x)/log(2.0)); };
// -1 is for feedback delay:
delaylines(N) = par(i,N,(de.delay(dlmax(i),(delayval(i)-1))));
delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
feedbackmatrix(N) = bhadamard(N);
vbutterfly(n) = si.bus(n) <: (si.bus(n):>bus(n/2)) , ((si.bus(n/2),(si.bus(n/2):par(i,n/2,*(-1)))) :> si.bus(n/2));
bhadamard(2) = si.bus(2) <: +,-;
bhadamard(n) = si.bus(n) <: (si.bus(n):>si.bus(n/2)) , ((si.bus(n/2),(si.bus(n/2):par(i,n/2,*(-1)))) :> si.bus(n/2))
: (bhadamard(n/2) , bhadamard(n/2));
// Experimental nonlinearities:
// nonlinallpass = apnl(nonl,-nonl);
// s = nonl*PI;
// nonlinallpass(x) = allpassnn(3,(s*x,s*x*x,s*x*x*x)); // filters.lib
nonlinallpass = _; // disabled by default (rather expensive)
filter(i,freqs,durs) = fi.filterbank(BBSO,freqs) : par(j,NB,*(g(j,i)))
:> *(loopgainmax) / sqrt(N) : nonlinallpass
with {
dur(j) = ba.take(j+1,durs);
n60(j) = dur(j)*ma.SR; // decay time in samples
g(j,i) = exp(-3.0*log(10.0)*delayval(i)/n60(j));
// ~ 1.0 - 6.91*delayval(i)/(SR*dur(j)); // valid for large dur(j)
};
};
//-------------------------------`(re.)zita_rev_fdn`-------------------------------
// Internal 8x8 late-reverberation FDN used in the FOSS Linux reverb `zita-rev1`
// by Fons Adriaensen <[email protected]>. This is an FDN reverb with
// allpass comb filters in each feedback delay in addition to the
// damping filters.
//
// #### Usage
//
// ```
// si.bus(8) : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) : si.bus(8)
// ```
//
// Where:
//
// * `f1`: crossover frequency (Hz) separating dc and midrange frequencies
// * `f2`: frequency (Hz) above f1 where T60 = t60m/2 (see below)
// * `t60dc`: desired decay time (t60) at frequency 0 (sec)
// * `t60m`: desired decay time (t60) at midrange frequencies (sec)
// * `fsmax`: maximum sampling rate to be used (Hz)
//
// #### Reference
//
// * <http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Zita_Rev1.html>
//------------------------------------------------------------
zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) =
((si.bus(2*N) :> allpass_combs(N) : feedbackmatrix(N)) ~
(delayfilters(N,freqs,durs) : fbdelaylines(N)))
with {
N = 8;
// Delay-line lengths in seconds:
apdelays = (0.020346, 0.024421, 0.031604, 0.027333, 0.022904,
0.029291, 0.013458, 0.019123); // feedforward delays in seconds
tdelays = (0.153129, 0.210389, 0.127837, 0.256891, 0.174713,
0.192303, 0.125000, 0.219991); // total delays in seconds
tdelay(i) = floor(0.5 + ma.SR*ba.take(i+1,tdelays)); // samples
apdelay(i) = floor(0.5 + ma.SR*ba.take(i+1,apdelays));
fbdelay(i) = tdelay(i) - apdelay(i);
// NOTE: Since SR is not bounded at compile time, we can't use it to
// allocate delay lines; hence, the fsmax parameter:
tdelaymaxfs(i) = floor(0.5 + fsmax*ba.take(i+1,tdelays));
apdelaymaxfs(i) = floor(0.5 + fsmax*ba.take(i+1,apdelays));
fbdelaymaxfs(i) = tdelaymaxfs(i) - apdelaymaxfs(i);
nextpow2(x) = ceil(log(x)/log(2.0));
maxapdelay(i) = int(2.0^max(1.0,nextpow2(apdelaymaxfs(i))));
maxfbdelay(i) = int(2.0^max(1.0,nextpow2(fbdelaymaxfs(i))));
apcoeff(i) = select2(i&1,0.6,-0.6); // allpass comb-filter coefficient
allpass_combs(N) =
par(i,N,(fi.allpass_comb(maxapdelay(i),apdelay(i),apcoeff(i)))); // filters.lib
fbdelaylines(N) = par(i,N,(de.delay(maxfbdelay(i),(fbdelay(i)))));
freqs = (f1,f2); durs = (t60dc,t60m);
delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
feedbackmatrix(N) = ro.hadamard(N);
staynormal = 10.0^(-20); // let signals decay well below LSB, but not to zero
special_lowpass(g,f) = si.smooth(p) with {
// unity-dc-gain lowpass needs gain g at frequency f => quadratic formula:
p = mbo2 - sqrt(max(0,mbo2*mbo2 - 1.0)); // other solution is unstable
mbo2 = (1.0 - gs*c)/(1.0 - gs); // NOTE: must ensure |g|<1 (t60m finite)
gs = g*g;
c = cos(2.0*ma.PI*f/float(ma.SR));
};
filter(i,freqs,durs) = lowshelf_lowpass(i)/sqrt(float(N))+staynormal
with {
lowshelf_lowpass(i) = gM*low_shelf1_l(g0/gM,f(1)):special_lowpass(gM,f(2));
low_shelf1_l(G0,fx,x) = x + (G0-1)*fi.lowpass(1,fx,x); // filters.lib
g0 = g(0,i);
gM = g(1,i);
f(k) = ba.take(k,freqs);
dur(j) = ba.take(j+1,durs);
n60(j) = dur(j)*ma.SR; // decay time in samples
g(j,i) = exp(-3.0*log(10.0)*tdelay(i)/n60(j));
};
};
// Stereo input delay used by zita_rev1 in both stereo and ambisonics mode:
zita_in_delay(rdel) = zita_delay_mono(rdel), zita_delay_mono(rdel) with {
zita_delay_mono(rdel) = de.delay(8192,ma.SR*rdel*0.001) * 0.3;
};
// Stereo input mapping used by zita_rev1 in both stereo and ambisonics mode:
zita_distrib2(N) = _,_ <: fanflip(N) with {
fanflip(4) = _,_,*(-1),*(-1);
fanflip(N) = fanflip(N/2),fanflip(N/2);
};
//----------------------------`(re.)zita_rev1_stereo`---------------------------
// Extend `zita_rev_fdn` to include `zita_rev1` input/output mapping in stereo mode.
// `zita_rev1_stereo` is a standard Faust function.
//
// #### Usage
//
// ```
// _,_ : zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax) : _,_
// ```
//
// Where:
//
// `rdel` = delay (in ms) before reverberation begins (e.g., 0 to ~100 ms)
// (remaining args and refs as for `zita_rev_fdn` above)
//------------------------------------------------------------
zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax) =
zita_in_delay(rdel)
: zita_distrib2(N)
: zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
: output2(N)
with {
N = 8;
output2(N) = outmix(N) : *(t1),*(t1);
t1 = 0.37; // zita-rev1 linearly ramps from 0 to t1 over one buffer
outmix(4) = !,ro.butterfly(2),!; // probably the result of some experimenting!
outmix(N) = outmix(N/2),par(i,N/2,!);
};
//-----------------------------`(re.)zita_rev1_ambi`---------------------------
// Extend `zita_rev_fdn` to include `zita_rev1` input/output mapping in
// "ambisonics mode", as provided in the Linux C++ version.
//
// #### Usage
//
// ```
// _,_ : zita_rev1_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) : _,_,_,_
// ```
//
// Where:
//
// `rgxyz` = relative gain of lanes 1,4,2 to lane 0 in output (e.g., -9 to 9)
// (remaining args and references as for zita_rev1_stereo above)
//------------------------------------------------------------
zita_rev1_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) =
zita_in_delay(rdel)
: zita_distrib2(N)
: zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
: output4(N) // ambisonics mode
with {
N = 8;
output4(N) = select4 : *(t0),*(t1),*(t1),*(t1);
select4 = _,_,_,!,_,!,!,! : _,_,cross with { cross(x,y) = y,x; };
t0 = 1.0/sqrt(2.0);
t1 = t0 * 10.0^(0.05 * rgxyz);
};
// end jos section
/************************************************************************
************************************************************************
FAUST library file, GRAME section
Except where noted otherwise, Copyright (C) 2003-2017 by GRAME,
Centre National de Creation Musicale.
----------------------------------------------------------------------
GRAME LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
//-------------------`(re.)vital_rev`------------------------------------------
// A port of the reverb from the Vital synthesizer. All input parameters
// have been normalized to a continuous [0,1] range, making them easy to modulate.
// The scaling of the parameters happens inside the function.
//
// #### Usage
//
// ```
// _,_ : vital_rev(prelow, prehigh, lowcutoff, highcutoff, lowgain, highgain, chorus_amt, chorus_freq, predelay, time, size, mix) : _,_
// ```
//
// Where:
//
// * `prelow`: In the pre-filter, this is the cutoff frequency of a high-pass filter (hence a low value).
// * `prehigh`: In the pre-filter, this is the cutoff frequency of a low-pass filter (hence a high value).
// * `lowcutoff`: In the feedback filter stage, this is the cutoff frequency of a low-shelf filter.
// * `highcutoff`: In the feedback filter stage, this is the cutoff frequency of a high-shelf filter.
// * `lowgain`: In the feedback filter stage, this is the gain of a low-shelf filter.
// * `highgain`: In the feedback filter stage, this is the gain of a high-shelf filter.
// * `chorus_amt`: The amount of chorus modulation in the main delay lines.
// * `chorus_freq`: The LFO rate of chorus modulation in the main delay lines.
// * `predelay`: The amount of pre-delay time.
// * `time`: The decay time of the reverb.
// * `size`: The size of the room.
// * `mix`: A wetness value to use in a final dry/wet mixer.
//-----------------------------------------------------------------------------
vital_rev(_prelow, _prehigh, _lowcutoff, _highcutoff, _lowgain, _highgain, _chorus_amt, _chorus_freq, _predelay, _time, _size, _mix) = ef.dryWetMixerConstantPower(wetAmount, reverb) : gainMakeup
with {
/* Copyright 2013-2019 Matt Tytel
*
* vital is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* vital is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with vital. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Adapted from https://github.com/mtytel/vital/blob/main/src/synthesis/effects/reverb.cpp
C++ author: Matt Tytel
Faust/Python author: David Braun
This is not an official product related to Vital.
David's analysis of the code:
This technique is an example of a Feedback Delay Network (FDN) (https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html).
Specifically, the feedback matrix is a 16x16 Hadamard matrix that has been efficiently implemented.
This matrix is the sum of three matrices:
* an identity matrix
* other_feedback
* adjacent_feedback
Although other_feedback and adjacent_feedback are not orthogonal,
when all three matrices are summed together, they are orthogonal and form a Hadamard matrix (ignoring a gain factor).
The orthogonality makes it a valid FDN matrix.
Note that other_feedback and adjacent_feedback are both 16x16 matrices.
Each is cleverly factorized into the product of a 16x4 matrix and a 4x16 matrix,
resulting in a 16x16 matrix.
Let's use numpy to explain the matrices and eventually show that the final result is Hadamard:
```python
import numpy as np
from scipy.linalg import block_diag
# Make identity matrix
identity = np.eye(16)
# Make adjacent_matrix matrix
x = np.ones((4,))
A = block_diag(x,x,x,x)
assert A.shape == (4,16)
adjacent_matrix = (A.T @ A)*-.5
assert adjacent_matrix.shape == (16,16)
# Make other_feedback
A = np.eye(4)
A = np.concatenate([A,A,A,A], axis=1)
assert A.shape == (4,16)
other_feedback = (A.T @ A)*-.5 + np.full((16,16), 1/4)
assert other_feedback.shape == (16,16)
final_matrix = identity + adjacent_matrix + other_feedback
# assert that final_matrix is orthogonal
assert ((final_matrix @ final_matrix.T) == identity).all()
# assert that (final_matrix*4) is a Hadamard matrix (see Wikipedia)
N = 16
assert np.round(np.linalg.det(final_matrix*4)) == N**(N/2)
```
Other notes:
Vital's reverb is similar to dm.zita_rev1.
In this Faust port of Vital, I placed the allpasses, and matrix in the
"forward" stage. I placed the filters, decay and delay in the "feedback" stage.
Similarly, in Zita Rev, the forward stage has the allpasses and matrix, while the
feedback stage has the filters and delay.
*/
DELAY_QUALITY = 3; // [1-3] where 3 is best, and 1 is linear interpolation
kBaseSampleRate = 44100; // it's ok if ma.SR is not 44100, but don't change this
kT60Amplitude = 0.001;
kAllpassFeedback = 0.6;
kMaxChorusDrift = 2500.0; // samples
kMinDecayTime = 0.1; // seconds
kMaxDecayTime = 100.0; // seconds
kMaxChorusFrequency = 16.0; // Hz
kPreDelayMaxSec = 0.3; // seconds
kNetworkContainers = 4; // the number of delay lines used for allpassDelay
kContainerSize = 4; // how long the allpassDelay waveforms below are
kMinSizePower = -3;
kMaxSizePower = 1; // decrease this to shorten the delay lines and reduce memory cost.
clampremap(from1, from2, to1, to2) = aa.clip(from1, from2) : it.remap(from1, from2, to1, to2);
low_pre_cutoff_frequency = _prelow : clampremap(0, 1, 16, 135) : ba.midikey2hz;
high_pre_cutoff_frequency = _prehigh : clampremap(0, 1, 16, 135) : ba.midikey2hz;
low_cutoff_frequency = _lowcutoff : clampremap(0, 1, 16, 135) : ba.midikey2hz;
high_cutoff_frequency = _highcutoff : clampremap(0, 1, 16, 135) : ba.midikey2hz;
low_gain = _lowgain : clampremap(0, 1, -24, 0);
high_gain = _highgain : clampremap(0, 1, -24, 0);
chorus_amount = _chorus_amt : aa.clip(0,1) : quadScale : _*kMaxChorusDrift*sample_rate_ratio*size_mult;
chorus_frequency = _chorus_freq : exp(it.remap(0, 1, -8, 3)) : min(kMaxChorusFrequency);
pre_delay_samples = _predelay : clampremap(0, 1, 0, kPreDelayMaxSec) : _*ma.SR;
decay_samples = _time : exp(it.remap(0, 1, -6, 6)) : aa.clip(kMinDecayTime, kMaxDecayTime) : _*kBaseSampleRate;
size = _size : aa.clip(0, 1);
wetAmount = _mix : aa.clip(0, 1);
quadScale(x) = x*x;
kNetworkSize = kNetworkContainers * kContainerSize;
containerBus = si.bus(kContainerSize);
networkBus = si.bus(kNetworkSize);
size_mult = pow(2, it.interpolate_linear(size, kMinSizePower, kMaxSizePower));
sample_rate_ratio = ma.SR/kBaseSampleRate;
kAllpassMaxDelay = 1001; // manually inspect values below and take max value
// allpassDelay(i) where `i` corresponds to 0 to (kNetworkContainers-1)
allpassDelay(0, i) = ba.take(i+1, (1001, 799, 933, 876));
allpassDelay(1, i) = ba.take(i+1, (895, 807, 907, 853));
allpassDelay(2, i) = ba.take(i+1, (957, 1019, 711, 567));
allpassDelay(3, i) = ba.take(i+1, (833, 779, 663, 997));
kFeedbackMaxDelay = (11329 + kMaxChorusDrift)*sample_rate_ratio*pow(2, kMaxSizePower); // pow(2, kMaxSizePower) is the max size_mult
// feedbackDelayHelp(i) where `i` corresponds to 0 to (kNetworkContainers-1)
feedbackDelayHelp(0, i) = ba.take(i+1, (6753.2, 9278.4, 7704.5, 11328.5));
feedbackDelayHelp(1, i) = ba.take(i+1, (9701.12, 5512.5, 8480.45, 5638.65));
feedbackDelayHelp(2, i) = ba.take(i+1, (3120.73, 3429.5, 3626.37, 7713.52));
feedbackDelayHelp(3, i) = ba.take(i+1, (4521.54, 6518.97, 5265.56, 5630.25));
feedbackDelay(i, j) = feedbackDelayHelp(i, j) : _ * size_mult * sample_rate_ratio;
getDecay(i, j) = pow(kT60Amplitude, feedbackDelay(i, j) / (decay_samples*sample_rate_ratio));
pre_delay = sp.stereoize(de.fdelayltv(N, kPreDelayMaxSec*ma.SR, safe_delay_samples))
with {
safe_delay_samples = pre_delay_samples : max((N-1)/2);
N = DELAY_QUALITY;
};
pre_filter = sp.stereoize(fi.highpass(1, low_pre_cutoff_frequency) : fi.lowpass(1, high_pre_cutoff_frequency) : _/kNetworkContainers);
// mathematical hard-syncing phasor (see `phasor_imp` in `faustlibraries/oscillators.lib`)
m_lfo_sine(freq, phase) = ((select2(hard_reset, +(freq/ma.SR), phase) : ma.decimal) ~ _) : sin(_*2*ma.PI)
with {
hard_reset = (1-1'); // To correctly start at `phase` at the first sample
};
phase_offset(i) = i / kNetworkSize;
real_part(phase_offset) = m_lfo_sine(chorus_frequency, phase_offset + .25); // "real" cosine part
imag_part(phase_offset) = m_lfo_sine(chorus_frequency, phase_offset); // "imaginary" sine part
lfo1(i) = phase_offset(i) : real_part;
lfo2(i) = phase_offset(i) : imag_part;
mydelay(delay_samples) = de.fdelayltv(N, kFeedbackMaxDelay, safe_delay_samples)
with {
safe_delay_samples = delay_samples : max((N-1)/2);
N = DELAY_QUALITY;
};
delay = par(i, kContainerSize, mydelay(feedbackDelay(0, i) + lfo1(i)*chorus_amount)),
par(i, kContainerSize, mydelay(feedbackDelay(1, i) - lfo1(i)*chorus_amount)),
par(i, kContainerSize, mydelay(feedbackDelay(2, i) + lfo2(i)*chorus_amount)),
par(i, kContainerSize, mydelay(feedbackDelay(3, i) - lfo2(i)*chorus_amount));
allpass(j) = par(i, kContainerSize, fi.allpass_comb(kAllpassMaxDelay, allpassDelay(j, i), kAllpassFeedback));
allpasses = par(i, kNetworkContainers, allpass(i));
filters = par(i, kNetworkSize,
(fi.lowshelf(1, low_gain, low_cutoff_frequency) : fi.highshelf(1, high_gain, high_cutoff_frequency))
);
other_feedback = total_rows <: (containerBus :> _/kContainerSize <: containerBus), par(i, kContainerSize, _*-.5) :> containerBus <: networkBus
with {
total_rows = networkBus :> containerBus;
};
adjacent_feedback = par(i, kNetworkContainers, containerBus :>_) : par(i, kNetworkContainers, _*s) <: par(i, kNetworkContainers, _<: containerBus)
with {
s = -.5*kNetworkContainers/kContainerSize;
};
decay = par(i, kNetworkContainers, par(j, kContainerSize, _*getDecay(i, j)));
matrix = networkBus <: networkBus, other_feedback, adjacent_feedback :> networkBus;
reverb =
// PRE
pre_delay : pre_filter <:
// BODY
(networkBus, networkBus :> allpasses : matrix)
~
// FEEDBACK
(filters : decay : delay)
// POST
// todo: It's odd that we have to swap the channels with ro.crossnn.
// This might be covering up some other mistake.
:> par(i, 2, _*2/kNetworkContainers) : ro.crossnn(1);
// dryWetMixerConstantPower causes an "insertion loss" when wet is not 50%.
// So a choice of 0% wet would actually have less volume than not using the reverb at all.
// We can makeup for this insertion loss by undoing the sqrt(2) division inside dryWetMixerConstantPower.
gainMakeup = _*sqrt(2), _*sqrt(2);
};
declare vital_rev author "David Braun";
declare vital_rev license "GPL-3.0";
//===============================Freeverb===================================
//==========================================================================
//----------------------------`(re.)mono_freeverb`-------------------------
// A simple Schroeder reverberator primarily developed by "Jezar at Dreampoint" that
// is extensively used in the free-software world. It uses four Schroeder allpasses in
// series and eight parallel Schroeder-Moorer filtered-feedback comb-filters for each
// audio channel, and is said to be especially well tuned.
//
// `mono_freeverb` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : mono_freeverb(fb1, fb2, damp, spread) : _
// ```
//
// Where:
//
// * `fb1`: coefficient of the lowpass comb filters (0-1)
// * `fb2`: coefficient of the allpass comb filters (0-1)
// * `damp`: damping of the lowpass comb filter (0-1)
// * `spread`: spatial spread in number of samples (for stereo)
//
// #### License
// While this version is licensed LGPL (with exception) along with other GRAME
// library functions, the file freeverb.dsp in the examples directory of older
// Faust distributions, such as faust-0.9.85, was released under the BSD license,
// which is less restrictive.
//------------------------------------------------------------
declare mono_freeverb author "Romain Michon";
mono_freeverb(fb1, fb2, damp, spread) = _ <: par(i,8,lbcf(combtuningL(i)+spread,fb1,damp))
:> seq(i,4,fi.allpass_comb(1024, allpasstuningL(i)+spread, -fb2))
with {
// Filters parameters
combtuningL(0) = adaptSR(1116);
combtuningL(1) = adaptSR(1188);
combtuningL(2) = adaptSR(1277);
combtuningL(3) = adaptSR(1356);
combtuningL(4) = adaptSR(1422);
combtuningL(5) = adaptSR(1491);
combtuningL(6) = adaptSR(1557);
combtuningL(7) = adaptSR(1617);
allpasstuningL(0) = adaptSR(556);
allpasstuningL(1) = adaptSR(441);
allpasstuningL(2) = adaptSR(341);
allpasstuningL(3) = adaptSR(225);
// Lowpass Feedback Combfilter:
// <https://ccrma.stanford.edu/~jos/pasp/Lowpass_Feedback_Comb_Filter.html>
lbcf(dt, fb, damp) = (+ : @ (max(0, (dt - 1)))) ~ (*(1-damp) : (+ ~ *(damp)) : *(fb)) : mem;
origSR = 44100;
adaptSR(val) = val*ma.SR/origSR : int;
};
//----------------------------`(re.)stereo_freeverb`-------------------------
// A simple Schroeder reverberator primarily developed by "Jezar at Dreampoint" that
// is extensively used in the free-software world. It uses four Schroeder allpasses in
// series and eight parallel Schroeder-Moorer filtered-feedback comb-filters for each
// audio channel, and is said to be especially well tuned.
//
// #### Usage
//
// ```
// _,_ : stereo_freeverb(fb1, fb2, damp, spread) : _,_
// ```
//
// Where:
//
// * `fb1`: coefficient of the lowpass comb filters (0-1)
// * `fb2`: coefficient of the allpass comb filters (0-1)
// * `damp`: damping of the lowpass comb filter (0-1)
// * `spread`: spatial spread in number of samples (for stereo)
//------------------------------------------------------------
declare stereo_freeverb author "Romain Michon";
stereo_freeverb(fb1, fb2, damp, spread) = + <: mono_freeverb(fb1, fb2, damp, 0), mono_freeverb(fb1, fb2, damp, spread);
//########################################################################################
/************************************************************************
FAUST library file, further contributions section
All contributions below should indicate both the contributor and terms
of license. If no such indication is found, "git blame" will say who
last edited each line, and that person can be emailed to inquire about
license disposition, if their license choice is not already indicated
elsewhere among the libraries. It is expected that all software will be
released under LGPL, STK-4.3, MIT, BSD, or a similar FOSS license.
************************************************************************/
//===============================Dattorro Reverb============================
//==========================================================================
//-------------------------------`(re.)dattorro_rev`-------------------------------
// Reverberator based on the Dattorro reverb topology. This implementation does
// not use modulated delay lengths (excursion).
//
// #### Usage
//
// ```
// _,_ : dattorro_rev(pre_delay, bw, i_diff1, i_diff2, decay, d_diff1, d_diff2, damping) : _,_
// ```
//
// Where:
//
// * `pre_delay`: pre-delay in samples (fixed at compile time)
// * `bw`: band-width filter (pre filtering); (0 - 1)
// * `i_diff1`: input diffusion factor 1; (0 - 1)
// * `i_diff2`: input diffusion factor 2;
// * `decay`: decay rate; (0 - 1); infinite decay = 1.0
// * `d_diff1`: decay diffusion factor 1; (0 - 1)
// * `d_diff2`: decay diffusion factor 2;
// * `damping`: high-frequency damping; no damping = 0.0
//
// #### Reference
//
// <https://ccrma.stanford.edu/~dattorro/EffectDesignPart1.pdf>
//------------------------------------------------------------
declare dattorro_rev author "Jakob Zerbian";
declare dattorro_rev licence "MIT-style STK-4.3 license";
dattorro_rev(pre_delay, bw, i_diff1, i_diff2, decay, d_diff1, d_diff2, damping) =
si.bus(2) : + : *(0.5) : predelay : bw_filter : diffusion_network <: ((si.bus(4) :> _,_) ~ (reverb_network : ro.cross(2)))
with {
// allpass using delay with fixed size
allpass_f(t, a) = (+ <: @(t),*(a)) ~ *(-a) : mem,_ : +;
// input pre-delay and diffusion
predelay = @(pre_delay);
bw_filter = *(bw) : +~(mem : *(1-bw));
diffusion_network = allpass_f(142, i_diff1) : allpass_f(107, i_diff1) : allpass_f(379, i_diff2) : allpass_f(277, i_diff2);
// reverb loop
reverb_network = par(i, 2, block(i)) with {
d = (672, 908, 4453, 4217, 1800, 2656, 3720, 3163);
block(i) = allpass_f(ba.take(i+1, d),-d_diff1) : @(ba.take(i+3, d)) : damp :
allpass_f(ba.take(i+5, d), d_diff2) : @(ba.take(i+5, d)) : *(decay)
with {
damp = *(1-damping) : +~*(damping) : *(decay);
};
};
};
//-------------------------------`(re.)dattorro_rev_default`-------------------------------
// Reverberator based on the Dattorro reverb topology with reverb parameters from the
// original paper.
// This implementation does not use modulated delay lengths (excursion) and
// uses zero length pre-delay.
//
// #### Usage
//
// ```
// _,_ : dattorro_rev_default : _,_
// ```
//
// #### Reference
//
// <https://ccrma.stanford.edu/~dattorro/EffectDesignPart1.pdf>
//------------------------------------------------------------
declare dattorro_rev_default author "Jakob Zerbian";
declare dattorro_rev_default license "MIT-style STK-4.3 license";
dattorro_rev_default = dattorro_rev(0, 0.9995, 0.75, 0.625, 0.5, 0.7, 0.5, 0.0005);
//===============================JPverb and Greyhole Reverbs============================
//======================================================================================
jp_gh_rev = environment {
diffuser_aux(angle, g, scale1, scale2, size, block) = si.bus(2) <: ((si.bus(2):par(i,2,*(c_norm))
: ((si.bus(4) :> si.bus(2)
: block
: rotator(angle)
: (de.fdelay1a(8192, ma.primes(size*scale1):smooth_init(0.9999,ma.primes(size*scale1)) -1),
de.fdelay1a(8192, ma.primes(size*scale2):smooth_init(0.9999,ma.primes(size*scale2)) -1)))
~ par(i,2,*(-s_norm))) : par(i,2,mem:*(c_norm)))
,
par(i,2,*(s_norm)))
:> si.bus(2)
with {
rotator(angle) = si.bus(2) <: (*(c),*(-s),*(s),*(c)) :(+,+) : si.bus(2)
with {
c = cos(angle);
s = sin(angle);
};
c_norm = cos(g);
s_norm = sin(g);
};
diffuser(angle, g, scale1, scale2, size) = diffuser_aux(angle,g,scale1,scale2,size,si.bus(2));
// Nested version
diffuser_nested(1, angle, g, scale, size) = diffuser_aux(angle,g,scale,scale+10,size,si.bus(2));
diffuser_nested(N, angle, g, scale, size) = diffuser_aux(angle,g,scale,scale+10,size,diffuser_nested(N-1,angle,g,scale+13,size));
smooth_init(s,default) = *(1.0 - s) : + ~ (+(default*init(1)):*(s)) with { init(value) = value - value'; };
invSqrt2 = 1/sqrt(2);
jpverb(t60, damp, size, early_diff, mod_depth, mod_freq, low, mid, high, low_cutoff, high_cutoff)
= ((si.bus(4) :> (de.fdelay4(512, depth + depth*os.oscrs(mod_freq) + 5),de.fdelay4(512, depth + depth*os.oscrc(mod_freq) + 5))
: par(i,2,si.smooth(damp))
: diffuser(ma.PI/4,early_diff,55,240,size)
: diffuser(ma.PI/4,early_diff,215,85,size)
: diffuser(ma.PI/4,early_diff,115,190,size)
: diffuser(ma.PI/4,early_diff,175,145,size)
)~(seq(i,5,diffuser(ma.PI/4,invSqrt2,10+30*i,110+30*i,size))
: par(i,2,de.fdelay4(512, depth + (-1^i)*depth*os.oscrc(mod_freq)+5)
: de.fdelay1a(8192,(ma.primes(size*(54+150*i))
: smooth_init(0.995,ma.primes(size*(54+150*i)))) -1))
: seq(i,5,diffuser(ma.PI/4,invSqrt2,125+30*i,25+30*i,size))
: par(i,2,de.fdelay4(8192, depth + (-1^i)*depth*os.oscrs(mod_freq)+5)
: de.fdelay1a(8192,(ma.primes(size*(134-100*i))
: smooth_init(0.995,ma.primes(size*(134-100*i)))) -1))
: par(i,2,fi.filterbank(5,(low_cutoff,high_cutoff)):(_*(high),_*(mid),_*(low)) :> _)
: par(i,2,*(fb))))
with {
depth = 50*mod_depth;
calib = 1.7; // Calibration constant given by t60 in seconds when fb = 0.5
total_length = calib*0.1*(size*5/4 -1/4);
fb = 10^(-3/((t60)/(total_length)));
};
greyhole(dt, damp, size, early_diff, feedback, mod_depth, mod_freq)
= (si.bus(4) :> seq(i,3,diffuser_nested(4,ma.PI/2,(-1^i)*diff,10+19*i,size))
: par(i,2,si.smooth(damp_interp)))
~((de.fdelay4(512, 10 + depth + depth*os.oscrc(freq)),de.fdelay4(512, 10 + depth + depth*os.oscrs(freq)))
: (de.sdelay(65536,44100/2,floor(dt_constrained)),de.sdelay(65536,44100/2,floor(dt_constrained)))
: par(i,2,*(fb)))
with {
fb = feedback:linear_interp;
depth = ((ma.SR/44100)*50*mod_depth):linear_interp;
freq = mod_freq:linear_interp;
diff = early_diff:linear_interp;
dt_constrained = min(65533,ma.SR*dt);
damp_interp = damp:linear_interp;
linear_interp(x) = (x+x')/2;
};
};
//-------------------------------`(re.)jpverb`-------------------------------
// An algorithmic reverb (stereo in/out), inspired by the lush chorused sound
// of certain vintage Lexicon and Alesis reverberation units.
// Designed to sound great with synthetic sound sources, rather than sound like a realistic space.
//
// #### Usage
//
// ```
// _,_ : jpverb(t60, damp, size, early_diff, mod_depth, mod_freq, low, mid, high, low_cutoff, high_cutoff) : _,_
// ```
//
// Where:
//
// * `t60`: approximate reverberation time in seconds ([0.1..60] sec) (T60 - the time for the reverb to decay by 60db when damp == 0 ). Does not effect early reflections
// * `damp`: controls damping of high-frequencies as the reverb decays. 0 is no damping, 1 is very strong damping. Values should be in the range ([0..1])
// * `size`: scales size of delay-lines within the reverberator, producing the impression of a larger or smaller space. Values below 1 can sound metallic. Values should be in the range [0.5..5]
// * `early_diff`: controls shape of early reflections. Values of 0.707 or more produce smooth exponential decay. Lower values produce a slower build-up of echoes. Values should be in the range ([0..1])
// * `mod_depth`: depth ([0..1]) of delay-line modulation. Use in combination with `mod_freq` to set amount of chorusing within the structure
// * `mod_freq`: frequency ([0..10] Hz) of delay-line modulation. Use in combination with `mod_depth` to set amount of chorusing within the structure
// * `low`: multiplier ([0..1]) for the reverberation time within the low band
// * `mid`: multiplier ([0..1]) for the reverberation time within the mid band
// * `high`: multiplier ([0..1]) for the reverberation time within the high band
// * `low_cutoff`: frequency (100..6000 Hz) at which the crossover between the low and mid bands of the reverb occurs
// * `high_cutoff`: frequency (1000..10000 Hz) at which the crossover between the mid and high bands of the reverb occurs
//
// #### Reference
//
// <https://doc.sccode.org/Overviews/DEIND.html>
//------------------------------------------------------------
declare jpverb author "Julian Parker, bug fixes and minor interface changes by Till Bovermann";
declare jpverb license "MIT license";
jpverb(t60, damp, size, early_diff,
mod_depth, mod_freq,
low, mid, high,
low_cutoff, high_cutoff)
= jp_gh_rev.jpverb(t60, damp, size, early_diff, mod_depth, mod_freq, low, mid, high, low_cutoff, high_cutoff);
//-------------------------------`(re.)greyhole`-------------------------------
// A complex echo-like effect (stereo in/out), inspired by the classic Eventide effect of a similar name.
// The effect consists of a diffuser (like a mini-reverb, structurally similar to the one used in `jpverb`)
// connected in a feedback system with a long, modulated delay-line.
// Excels at producing spacey washes of sound.
//
// #### Usage
//
// ```
// _,_ : greyhole(dt, damp, size, early_diff, feedback, mod_depth, mod_freq) : _,_
// ```
//
// Where:
//
// * `dt`: approximate reverberation time in seconds ([0.1..60 sec])
// * `damp`: controls damping of high-frequencies as the reverb decays. 0 is no damping, 1 is very strong damping. Values should be between ([0..1])
// * `size`: control of relative "room size" roughly in the range ([0.5..3])
// * `early_diff`: controls pattern of echoes produced by the diffuser. At very low values, the diffuser acts like a delay-line whose length is controlled by the 'size' parameter. Medium values produce a slow build-up of echoes, giving the sound a reversed-like quality. Values of 0.707 or greater than produce smooth exponentially decaying echoes. Values should be in the range ([0..1])
// * `feedback`: amount of feedback through the system. Sets the number of repeating echoes. A setting of 1.0 produces infinite sustain. Values should be in the range ([0..1])
// * `mod_depth`: depth ([0..1]) of delay-line modulation. Use in combination with `mod_freq` to produce chorus and pitch-variations in the echoes
// * `mod_freq`: frequency ([0..10] Hz) of delay-line modulation. Use in combination with `mod_depth` to produce chorus and pitch-variations in the echoes
//
// #### Reference
//
// <https://doc.sccode.org/Overviews/DEIND.html>
//------------------------------------------------------------
declare greyhole author "Julian Parker, bug fixes and minor interface changes by Till Bovermann";
declare greyhole license "MIT license";
greyhole(dt, damp, size, early_diff, feedback, mod_depth, mod_freq)
= jp_gh_rev.greyhole(dt, damp, size, early_diff, feedback, mod_depth, mod_freq);
// end further further contributions section