forked from grame-cncm/faustlibraries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
misceffects.lib
1071 lines (961 loc) · 36.8 KB
/
misceffects.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//################################## misceffects.lib ##########################################
// Collection of audio effects library. Its official prefix is `ef`.
//
// The library is organized into 7 sections:
//
// * [Dynamic](#Dynamic)
// * [Fibonacci](#fibonacci)
// * [Filtering](#filtering)
// * [Meshes](#meshes)
// * [Mixing](#mixing)
// * [Time Based](#time-based)
// * [Pitch Shifting](#pitch-shifting)
// * [Saturators](#saturators)
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/misceffects.lib>
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ma = library("maths.lib");
ba = library("basics.lib");
de = library("delays.lib");
si = library("signals.lib");
an = library("analyzers.lib");
fi = library("filters.lib");
ro = library("routes.lib");
aa = library("aanl.lib");
ef = library("misceffects.lib"); // for compatible copy/paste out of this file
declare name "Misc Effects Library";
declare version "2.5.0";
//======================================Dynamic===========================================
//========================================================================================
//---------------------`(ef.)cubicnl`-----------------------
// Cubic nonlinearity distortion.
// `cubicnl` is a standard Faust function.
//
// #### Usage:
//
// ```
// _ : cubicnl(drive,offset) : _
// _ : cubicnl_nodc(drive,offset) : _
// ```
//
// Where:
//
// * `drive`: distortion amount, between 0 and 1
// * `offset`: constant added before nonlinearity to give even harmonics. Note: offset
// can introduce a nonzero mean - feed cubicnl output to dcblocker to remove this.
//
// #### References:
//
// * <https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Nonlinear_Distortion.html>
//------------------------------------------------------------
cubicnl(drive,offset) = *(pregain) : +(offset) : clip(-1,1) : cubic
with {
pregain = pow(10.0,2*drive);
clip(lo,hi) = min(hi) : max(lo);
cubic(x) = x - x*x*x/3;
postgain = max(1.0,1.0/pregain);
};
cubicnl_nodc(drive,offset) = cubicnl(drive,offset) : fi.dcblocker;
declare cubicnl author "Julius O. Smith III";
declare cubicnl license "STK-4.3";
declare cubicnl_nodc author "Julius O. Smith III";
declare cubicnl_nodc license "STK-4.3";
//-----------------`(ef.)gate_mono`-------------------
// Mono signal gate.
// `gate_mono` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : gate_mono(thresh,att,hold,rel) : _
// ```
//
// Where:
//
// * `thresh`: dB level threshold above which gate opens (e.g., -60 dB)
// * `att`: attack time = time constant (sec) for gate to open (e.g., 0.0001 s = 0.1 ms)
// * `hold`: hold time = time (sec) gate stays open after signal level < thresh (e.g., 0.1 s)
// * `rel`: release time = time constant (sec) for gate to close (e.g., 0.020 s = 20 ms)
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Noise_gate>
// * <http://www.soundonsound.com/sos/apr01/articles/advanced.asp>
// * <http://en.wikipedia.org/wiki/Gating_(sound_engineering)>
//------------------------------------------------------------
gate_mono(thresh,att,hold,rel,x) = x * gate_gain_mono(thresh,att,hold,rel,x);
declare gate_mono author "Julius O. Smith III";
declare gate_mono license "STK-4.3";
//-----------------`(ef.)gate_stereo`-------------------
// Stereo signal gates.
// `gate_stereo` is a standard Faust function.
//
// #### Usage
//
// ```
// _,_ : gate_stereo(thresh,att,hold,rel) : _,_
// ```
//
// Where:
//
// * `thresh`: dB level threshold above which gate opens (e.g., -60 dB)
// * `att`: attack time = time constant (sec) for gate to open (e.g., 0.0001 s = 0.1 ms)
// * `hold`: hold time = time (sec) gate stays open after signal level < thresh (e.g., 0.1 s)
// * `rel`: release time = time constant (sec) for gate to close (e.g., 0.020 s = 20 ms)
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Noise_gate>
// * <http://www.soundonsound.com/sos/apr01/articles/advanced.asp>
// * <http://en.wikipedia.org/wiki/Gating_(sound_engineering)>
//------------------------------------------------------------
gate_stereo(thresh,att,hold,rel,x,y) = ggm*x, ggm*y with {
ggm = gate_gain_mono(thresh,att,hold,rel,abs(x)+abs(y));
};
gate_gain_mono(thresh,att,hold,rel,x) = x : extendedrawgate : an.amp_follower_ar(att,rel) with {
extendedrawgate(x) = max(float(rawgatesig(x)),holdsig(x));
rawgatesig(x) = inlevel(x) > ba.db2linear(thresh);
minrate = min(att,rel);
inlevel = an.amp_follower_ar(minrate,minrate);
holdcounter(x) = (max(holdreset(x) * holdsamps,_) ~-(1));
holdsig(x) = holdcounter(x) > 0;
holdreset(x) = rawgatesig(x) < rawgatesig(x)'; // reset hold when raw gate falls
holdsamps = int(hold*ma.SR);
};
declare gate_stereo author "Julius O. Smith III";
declare gate_stereo license "STK-4.3";
declare gate_gain_mono author "Julius O. Smith III";
declare gate_gain_mono license "STK-4.3";
//=====================================Fibonacci==========================================
//========================================================================================
//---------------`(ef.)fibonacci`---------------------------
// Fibonacci system where the current output is the current
// input plus the sum of the previous N outputs.
//
// #### Usage
//
// ```
// _ : fibonacci(N) : _
// ```
//
// Where:
//
// * `N`: the Fibonacci system's order, where 2 is standard
//
// #### Example
// Generate the famous series: [1, 1, 2, 3, 5, 8, 13, ...]
//
// ```
// 1. : ba.impulsify : fibonacci(2)
// ```
//------------------------------------------------------------
declare fibonacci author "Dario Sanfilippo";
fibonacci(order) = +~(_<:sum(i, order, @(i)):>_);
//---------------`(ef.)fibonacciGeneral`----------------------
// Fibonacci system with customizable coefficients.
// The order of the system is inferred from the number of coefficients.
//
// #### Usage
//
// ```
// _ : fibonacciGeneral(wave) : _
// ```
//
// Where:
//
// * `wave`: a waveform such as `waveform{1, 1}`
//
// #### Example:
// Use the update equation `y = 2*y' + 3*y'' + 4*y'''`
//
// ```
// 1. : ba.impulsify : fibonacciGeneral(waveform{2, 3, 4})
// ```
//------------------------------------------------------------
declare fibonacciGeneral author "Dario Sanfilippo and David Braun";
fibonacciGeneral(wave) = +~(_<:sum(i, N, func(i)):>_)
with {
N = wave : _, !;
func(i) = @(i) : _ * (wave, i : rdtable);
};
//---------------`(ef.)fibonacciSeq`---------------------------
// First N numbers of the Fibonacci sequence [1, 1, 2, 3, 5, 8, ...]
// as parallel channels.
//
// #### Usage
//
// ```
// fibonacciSeq(N) : si.bus(N)
// ```
//
// Where:
//
// * `N`: The number of Fibonacci numbers to generate as channels.
//
//------------------------------------------------------------
fibonacciSeq(N) = iterate(N, (1, 1))
with {
iterate(1, (A0, A1)) = A0;
iterate(N, (A0, A1)) = A0 , iterate(N - 1, (A1, A0 + A1));
};
declare fibonacciSeq author "Dario Sanfilippo";
//=====================================Filtering==========================================
//========================================================================================
//-------------------------`(ef.)speakerbp`-------------------------------
// Dirt-simple speaker simulator (overall bandpass eq with observed
// roll-offs above and below the passband). `speakerbp` is a standard Faust function.
//
// Low-frequency speaker model = +12 dB/octave slope breaking to
// flat near f1. Implemented using two dc blockers in series.
//
// High-frequency model = -24 dB/octave slope implemented using a
// fourth-order Butterworth lowpass.
//
//
// #### Usage
// ```
// _ : speakerbp(f1,f2) : _
// ```
// #### Example
//
// Based on measured Celestion G12 (12" speaker):
// ```
// speakerbp(130,5000)
// ```
//------------------------------------------------------------
// TODO: perhaps this should be moved to physmodels.lib
// [JOS: I don't think so because it's merely a bandpass filter tuned to speaker bandwidth]
speakerbp(f1,f2) = fi.dcblockerat(f1) : fi.dcblockerat(f1) : fi.lowpass(4,f2);
declare speakerbp author "Julius O. Smith III";
declare speakerbp license "STK-4.3";
//------------`(ef.)piano_dispersion_filter`---------------
// Piano dispersion allpass filter in closed form.
//
// #### Usage
//
// ```
// piano_dispersion_filter(M,B,f0)
// _ : piano_dispersion_filter(1,B,f0) : +(totalDelay),_ : fdelay(maxDelay) : _
// ```
//
// Where:
//
// * `M`: number of first-order allpass sections (compile-time only)
// Keep below 20. 8 is typical for medium-sized piano strings.
// * `B`: string inharmonicity coefficient (0.0001 is typical)
// * `f0`: fundamental frequency in Hz
//
// #### Outputs
//
// * MINUS the estimated delay at `f0` of allpass chain in samples,
// provided in negative form to facilitate subtraction
// from delay-line length.
// * Output signal from allpass chain
//
// #### Reference
//
// * "Dispersion Modeling in Waveguide Piano Synthesis Using Tunable
// Allpass Filters", by Jukka Rauhala and Vesa Valimaki, DAFX-2006, pp. 71-76
// * <http://lib.tkk.fi/Diss/2007/isbn9789512290666/article2.pdf>
// An erratum in Eq. (7) is corrected in Dr. Rauhala's encompassing
// dissertation (and below).
// * <http://www.acoustics.hut.fi/research/asp/piano/>
//------------------------------------------------------------
// TODO: perhaps this should be moved to physmodels.lib?
// [JOS: I vote yes when there is a piano model in physmodels.lib.]
piano_dispersion_filter(M,B,f0) = -Df0*M,seq(i,M,fi.tf1(a1,1,a1))
with {
a1 = (1-D)/(1+D); // By Eq. 3, have D >= 0, hence a1 >= 0 also
D = exp(Cd - Ikey(f0)*kd);
trt = pow(2.0,1.0/12.0); // 12th root of 2
logb(b,x) = log(x) / log(b); // log-base-b of x
Ikey(f0) = logb(trt,f0*trt/27.5);
Bc = max(B,0.000001);
kd = exp(k1*log(Bc)*log(Bc) + k2*log(Bc)+k3);
Cd = exp((m1*log(M)+m2)*log(Bc)+m3*log(M)+m4);
k1 = -0.00179;
k2 = -0.0233;
k3 = -2.93;
m1 = 0.0126;
m2 = 0.0606;
m3 = -0.00825;
m4 = 1.97;
wT = 2*ma.PI*f0/ma.SR;
polydel(a) = atan(sin(wT)/(a+cos(wT)))/wT;
Df0 = polydel(a1) - polydel(1.0/a1);
};
declare piano_dispersion_filter author "Julius O. Smith III";
declare piano_dispersion_filter license "STK-4.3";
//-------------------------`(ef.)stereo_width`---------------------------
// Stereo Width effect using the Blumlein Shuffler technique.
// `stereo_width` is a standard Faust function.
//
// #### Usage
//
// ```
// _,_ : stereo_width(w) : _,_
// ```
//
// Where:
//
// * `w`: stereo width between 0 and 1
//
// At `w=0`, the output signal is mono ((left+right)/2 in both channels).
// At `w=1`, there is no effect (original stereo image).
// Thus, w between 0 and 1 varies stereo width from 0 to "original".
//
// #### Reference
//
// * "Applications of Blumlein Shuffling to Stereo Microphone Techniques"
// Michael A. Gerzon, JAES vol. 42, no. 6, June 1994
//------------------------------------------------------------
stereo_width(w) = shuffle : *(mgain),*(sgain) : shuffle
with {
shuffle = _,_ <: +,-; // normally scaled by 1/sqrt(2) for orthonormality,
mgain = 1-w/2; // but we pick up the needed normalization here.
sgain = w/2;
};
declare stereo_width author "Julius O. Smith III";
declare stereo_width license "STK-4.3";
//===========================================Meshes=======================================
//========================================================================================
// TODO: the following should be in physmodels.lib when it will be operational
// [JOS: I think a new "Meshes" section would fit well after Modal Percussions.]
//----------------------------------`(ef.)mesh_square`------------------------------
// Square Rectangular Digital Waveguide Mesh.
//
// #### Usage
//
// ```
// bus(4*N) : mesh_square(N) : bus(4*N)
// ```
//
// Where:
//
// * `N`: number of nodes along each edge - a power of two (1,2,4,8,...)
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Mesh.html>
//
// #### Signal Order In and Out
//
// The mesh is constructed recursively using 2x2 embeddings. Thus,
// the top level of `mesh_square(M)` is a block 2x2 mesh, where each
// block is a `mesh(M/2)`. Let these blocks be numbered 1,2,3,4 in the
// geometry NW,NE,SW,SE, i.e., as:
//
// 1 2
// 3 4
//
// Each block has four vector inputs and four vector outputs, where the
// length of each vector is `M/2`. Label the input vectors as Ni,Ei,Wi,Si,
// i.e., as the inputs from the North, East South, and West,
// and similarly for the outputs. Then, for example, the upper
// left input block of M/2 signals is labeled 1Ni. Most of the
// connections are internal, such as 1Eo -> 2Wi. The `8*(M/2)` input
// signals are grouped in the order:
//
// 1Ni 2Ni
// 3Si 4Si
// 1Wi 3Wi
// 2Ei 4Ei
//
// and the output signals are:
//
// 1No 1Wo
// 2No 2Eo
// 3So 3Wo
// 4So 4Eo
// or:
//
// In: 1No 1Wo 2No 2Eo 3So 3Wo 4So 4Eo
// Out: 1Ni 2Ni 3Si 4Si 1Wi 3Wi 2Ei 4Ei
//
// Thus, the inputs are grouped by direction N,S,W,E, while the
// outputs are grouped by block number 1,2,3,4, which can also be
// interpreted as directions NW, NE, SW, SE. A simple program
// illustrating these orderings is `process = mesh_square(2);`.
//
// #### Example
//
// Reflectively terminated mesh impulsed at one corner:
//
// ```
// mesh_square_test(N,x) = mesh_square(N)~(busi(4*N,x)) // input to corner
// with {
// busi(N,x) = bus(N) : par(i,N,*(-1)) : par(i,N-1,_), +(x);
// };
// process = 1-1' : mesh_square_test(4); // all modes excited forever
// ```
//
// In this simple example, the mesh edges are connected as follows:
//
// 1No -> 1Ni, 1Wo -> 2Ni, 2No -> 3Si, 2Eo -> 4Si,
// 3So -> 1Wi, 3Wo -> 3Wi, 4So -> 2Ei, 4Eo -> 4Ei
//
// A routing matrix can be used to obtain other connection geometries.
//------------------------------------------------------------
// four-port scattering junction:
mesh_square(1) =
si.bus(4) <: par(i,4,*(-1)), (si.bus(4) :> (*(.5)) <: si.bus(4)) :> si.bus(4);
// rectangular NxN square waveguide mesh:
mesh_square(N) = si.bus(4*N) : (route_inputs(N/2) : par(i,4,mesh_square(N/2)))
~(prune_feedback(N/2))
: prune_outputs(N/2) : route_outputs(N/2) : si.bus(4*N)
with {
// select block i of N, block size = M:
s(i,N,M) = par(j, M*N, Sv(i, j))
with { Sv(i,i) = si.bus(N); Sv(i,j) = si.block(N); };
// prune mesh outputs down to the signals which make it out:
prune_outputs(N)
= si.bus(16*N) :
si.block(N), si.bus(N), si.block(N), si.bus(N),
si.block(N), si.bus(N), si.bus(N), si.block(N),
si.bus(N), si.block(N), si.block(N), si.bus(N),
si.bus(N), si.block(N), si.bus(N), si.block(N)
: si.bus(8*N);
// collect mesh outputs into standard order (N,W,E,S):
route_outputs(N)
= si.bus(8*N)
<: s(4,N,8),s(5,N,8), s(0,N,8),s(2,N,8),
s(3,N,8),s(7,N,8), s(1,N,8),s(6,N,8)
: si.bus(8*N);
// collect signals used as feedback:
prune_feedback(N) = si.bus(16*N) :
si.bus(N), si.block(N), si.bus(N), si.block(N),
si.bus(N), si.block(N), si.block(N), si.bus(N),
si.block(N), si.bus(N), si.bus(N), si.block(N),
si.block(N), si.bus(N), si.block(N), si.bus(N) :
si.bus(8*N);
// route mesh inputs (feedback, external inputs):
route_inputs(N) = si.bus(8*N), si.bus(8*N)
<:s(8,N,16),s(4,N,16), s(12,N,16),s(3,N,16),
s(9,N,16),s(6,N,16), s(1,N,16),s(14,N,16),
s(0,N,16),s(10,N,16), s(13,N,16),s(7,N,16),
s(2,N,16),s(11,N,16), s(5,N,16),s(15,N,16)
: si.bus(16*N);
};
declare mesh_square author "Julius O. Smith III";
declare mesh_square license "STK-4.3";
//=====================================Mixing=============================================
//========================================================================================
// Implementation to share common code
dwmEnv(wetAmount, FX) = environment
{
N = inputs(FX);
wet(wg) = FX : par(i, N, *(wg));
dry(dg) = par(i, N, *(dg));
out(wg, dg) = si.bus(N) <: wet(wg), dry(dg) :> si.bus(N);
dryWetMixer = out(wetGain, dryGain)
with {
wetGain = wetAmount;
dryGain = 1. - wetGain;
};
dryWetMixerConstantPower = out(wetGain, dryGain)
with {
theta = ma.PI*wetAmount/2.;
dryGain = cos(theta)/sqrt(2.);
wetGain = sin(theta)/sqrt(2.);
};
};
//---------------`(ef.)dryWetMixer`-------------
// Linear dry-wet mixer for a N inputs and N outputs effect.
//
// #### Usage
//
// ```
// si.bus(inputs(FX)) : dryWetMixer(wetAmount, FX) : si.bus(inputs(FX))
// ```
//
// Where:
//
// * `wetAmount`: the wet amount (0-1). 0 produces only the dry signal and 1 produces only the wet signal
// * `FX`: an arbitrary effect (N inputs and N outputs) to apply to the input bus
//------------------------------------------------------------
declare dryWetMixer author "David Braun, revised by Stéphane Letz";
dryWetMixer(wetAmount, FX) = dwmEnv(wetAmount, FX).dryWetMixer;
//---------------`(ef.)dryWetMixerConstantPower`-------------
// Constant-power dry-wet mixer for a N inputs and N outputs effect.
//
// #### Usage
//
// ```
// si.bus(inputs(FX)) : dryWetMixerConstantPower(wetAmount, FX) :si.bus(inputs(FX))
// ```
//
// Where:
//
// * `wetAmount`: the wet amount (0-1). 0 produces only the dry signal and 1 produces only the wet signal
// * `FX`: an arbitrary effect (N inputs and N outputs) to apply to the input bus
//------------------------------------------------------------
declare dryWetMixerConstantPower author "David Braun, revised by Stéphane Letz";
dryWetMixerConstantPower(wetAmount, FX) = dwmEnv(wetAmount, FX).dryWetMixerConstantPower;
mixingEnv = environment
{
// Note that i goes from 0 to N-1.
// m goes from 0 to N-1 typically, but the output should be periodic with size N.
// In other words the output with m=-4*N is the same as -2*N, -1*N, 0, 1*N, 2*N etc.
phaseLoop(N, m, i) = select2(abs(phase1)<abs(phase2), phase2, phase1)
with {
phase1 = fmod(i-m,N);
phase2 = phase1+ba.if(phase1<0,N,-N);
};
phaseClamp(N, m, i) = i-aa.clip(0,N-1,m);
// We divide by sqrt(2) at the end so that for m=0.5,1.5,2.5 etc,
// the total gain is 1.0, matching phase2LinearWeight. However,
// this means for m=0,1,2,3, etc, the gain is (1./sqrt(2)~=0.7071).
phase2PowerWeight = aa.clip(-1, 1) : cos(_*ma.PI*.5) / sqrt(2.);
phase2LinearWeight = aa.clip(-1, 1) : 1-abs(_);
//------------------------`weightsPowerLoop`---------------------------
// "Fan out" an index into N weights between 0 and 1. At any given
// moment, two weights may be non-zero. Suppose they are N_m and N_{m+1}.
// Then `cos(N_m)^2+sin(N_{m+1})^2==0.5`.
//
// #### Usage
//
// ```
// _ : weightsPowerLoop(N) : si.bus(N)
// ```
// Where:
//
// * `N`: number of output weights
// * `m`: [0;N-1] (float) blend index. If m is outside [0;N-1], the behavior will loop.
//. So m=-N, m=0, and m=N should give the same output.
weightsPowerLoop(N, m) = par(i, N, gain(i))
with {
gain(i) = phaseLoop(N, m, i) : phase2PowerWeight;
};
// Same as above, but the two weights being blended at any moment SUM to 1.
weightsLinearLoop(N, m) = par(i, N, gain(i))
with {
gain(i) = phaseLoop(N, m, i) : phase2LinearWeight;
};
// Same as weightsPowerLoop, but m is clamped to [0;N-1]
weightsPowerClamp(N, m) = par(i, N, gain(i))
with {
gain(i) = phaseClamp(N, m, i) : phase2PowerWeight;
};
// Same as weightsLinearLoop, but m is clamped to [0;N-1]
weightsLinearClamp(N, m) = par(i, N, gain(i))
with {
gain(i) = phaseClamp(N, m, i) : phase2LinearWeight;
};
dryWetMixer(wetAmount, FX) = si.vecOp((weights, sounds), *) :> si.bus(C)
with {
N = 2; // We know in advance that there are 2 sounds (the dry and wet).
C = inputs(FX);
weights = weightsLinearClamp(N, wetAmount) <: ro.interleave(N, C);
sounds = si.bus(C) <: si.bus(C), FX;
};
dryWetMixerConstantPower(wetAmount, FX) = si.vecOp((weights, sounds), *) :> si.bus(C)
with {
N = 2; // We know in advance that there are 2 sounds (the dry and wet).
C = inputs(FX);
weights = weightsPowerClamp(N, wetAmount) <: ro.interleave(N, C);
sounds = si.bus(C) <: si.bus(C), FX;
};
// Suppose `sounds` is N buses, each of C channels.
// We want to linearly mix the buses using index `m` [0;N-1]
mixLinearClamp(N, C, m, sounds) = si.vecOp((weights, sounds), *) :> si.bus(C)
with {
weights = weightsLinearClamp(N, m) <: ro.interleave(N, C);
};
mixLinearLoop(N, C, m, sounds) = si.vecOp((weights, sounds), *) :> si.bus(C)
with {
weights = weightsLinearLoop(N, m) <: ro.interleave(N, C);
};
mixPowerClamp(N, C, m, sounds) = si.vecOp((weights, sounds), *) :> si.bus(C)
with {
weights = weightsPowerClamp(N, m) <: ro.interleave(N, C);
};
mixPowerLoop(N, C, m, sounds) = si.vecOp((weights, sounds), *) :> si.bus(C)
with {
weights = weightsPowerLoop(N, m) <: ro.interleave(N, C);
};
};
//---------------`(ef.)mixLinearClamp`-------------------------------------------------
// Linear mixer for `N` buses, each with `C` channels. The output will be a sum of 2 buses
// determined by the mixing index `mix`. 0 produces the first bus, 1 produces the
// second, and so on. `mix` is clamped automatically. For example, `mixLinearClamp(4, 1, 1)`
// will weight its 4 inputs by `(0, 1, 0, 0)`. Similarly, `mixLinearClamp(4, 1, 1.1)`
// will weight its 4 inputs by `(0,.9,.1,0)`.
//
// #### Usage
//
// ```
// si.bus(N*C) : mixLinearClamp(N, C, mix) : si.bus(C)
// ```
//
// Where:
//
// * `N`: the number of input buses
// * `C`: the number of channels in each bus
// * `mix`: the mixing index, continuous in [0;N-1].
//---------------------------------------------------------------------------------------
declare mixLinearClamp author "David Braun";
mixLinearClamp = mixingEnv.mixLinearClamp;
//---------------`(ef.)mixLinearLoop`-------------------------------------------------
// Linear mixer for `N` buses, each with `C` channels. Refer to `mixLinearClamp`. `mix`
// will loop for multiples of `N`. For example, `mixLinearLoop(4, 1, 0)` has the same
// effect as `mixLinearLoop(4, 1, -4)` and `mixLinearLoop(4, 1, 4)`.
//
// #### Usage
//
// ```
// si.bus(N*C) : mixLinearLoop(N, C, mix) : si.bus(C)
// ```
//
// Where:
//
// * `N`: the number of input buses
// * `C`: the number of channels in each bus
// * `mix`: the mixing index (N-1) selects the last bus, and 0 or N selects the 0th bus.
//---------------------------------------------------------------------------------------
declare mixLinearLoop author "David Braun";
mixLinearLoop = mixingEnv.mixLinearLoop;
//---------------`(ef.)mixPowerClamp`-------------------------------------------------
// Constant-power mixer for `N` buses, each with `C` channels. The output will be a sum of 2 buses
// determined by the mixing index `mix`. 0 produces the first bus, 1 produces the
// second, and so on. `mix` is clamped automatically. `mixPowerClamp(4, 1, 1)`
// will weight its 4 inputs by `(0, 1./sqrt(2), 0, 0)`. Similarly, `mixPowerClamp(4, 1, 1.5)`
// will weight its 4 inputs by `(0,.5,.5,0)`.
//
// #### Usage
//
// ```
// si.bus(N*C) : mixPowerClamp(N, C, mix) : si.bus(C)
// ```
//
// Where:
//
// * `N`: the number of input buses
// * `C`: the number of channels in each bus
// * `mix`: the mixing index, continuous in [0;N-1].
//---------------------------------------------------------------------------------------
declare mixPowerClamp author "David Braun";
mixPowerClamp = mixingEnv.mixPowerClamp;
//---------------`(ef.)mixPowerLoop`-----------------------------------------------------
// Constant-power mixer for `N` buses, each with `C` channels. Refer to `mixPowerClamp`. `mix`
// will loop for multiples of `N`. For example, `mixPowerLoop(4, 1, 0)` has the same effect
// as `mixPowerLoop(4, 1, -4)` and `mixPowerLoop(4, 1, 4)`.
//
// #### Usage
//
// ```
// si.bus(N*C) : mixPowerLoop(N, C, mix) : si.bus(C)
// ```
//
// Where:
//
// * `N`: the number of input buses
// * `C`: the number of channels in each bus
// * `mix`: the mixing index (N-1) selects the last bus, and 0 or N selects the 0th bus.
//---------------------------------------------------------------------------------------
declare mixPowerLoop author "David Braun";
mixPowerLoop = mixingEnv.mixPowerLoop;
//========================================Time Based======================================
//========================================================================================
//----------`(ef.)echo`----------
// A simple echo effect.
// `echo` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : echo(maxDuration,duration,feedback) : _
// ```
//
// Where:
//
// * `maxDuration`: the max echo duration in seconds
// * `duration`: the echo duration in seconds
// * `feedback`: the feedback coefficient
//----------------------------------------------------
declare echo author "Romain Michon";
echo(maxDuration,duration,feedback) = +~de.delay(maxDel,del)*feedback
with{
maxDel = ma.SR*maxDuration;
del = ma.SR*duration;
};
// TODO demo function for echo
//--------------------`(ef.)reverseEchoN(nChans,delay)`-------------------
// Reverse echo effect.
//
// #### Usage
//
// ```
// _ : ef.reverseEchoN(N,delay) : si.bus(N)
// ```
//
// Where:
//
// * `N`: Number of output channels desired (1 or more), a constant numerical expression
// * `delay`: echo delay (integer power of 2)
//
// #### Demo
//
// ```
// _ : dm.reverseEchoN(N) : _,_
// ```
//
// #### Description
//
// The effect uses N instances of `reverseDelayRamped` at different phases.
//
//------------------------------------------------------------
reverseEchoN(N,delMax) = _<: par(i,N,ef.reverseDelayRamped(delMax,i/N));
declare reverseEchoN author "Julius O. Smith III";
declare reverseEchoN license "STK-4.3";
//-------------------`(ef.)reverseDelayRamped(delay,phase)`------------------
// Reverse delay with amplitude ramp.
//
// #### Usage
//
// ```
// _ : ef.reverseDelayRamped(delay,phase) : _
// ```
//
// Where:
//
// * `delay`: echo delay (integer power of 2)
// * `phase`: float between 0 and 1 giving ramp delay phase*delay
//
// #### Demo
//
// ```
// _ : ef.reverseDelayRamped(32,0.6) : _,_
// ```
//
//------------------------------------------------------------
reverseDelayRamped(delMax,phs) = rampGain * de.delay(delMax,del) with {
rampGain = 4 * (del/delMax) * (1 - del/delMax); // suppress click when delay-line wraps around
delOffset = int(floor(0.5 + delMax * max(0,min(0.999999,phs)))); // starting point in delay line
startPulse = (1-1') * delOffset;
del = int(startPulse : + ~ +(2)) & (delMax-1);
};
declare reverseDelayRamped author "Julius O. Smith III";
declare reverseDelayRamped license "STK-4.3";
//-------------------`(ef.)uniformPanToStereo(nChans)`------------------
// Pan nChans channels to the stereo field, spread uniformly left to right.
//
// #### Usage
//
// ```
// si.bus(N) : ef.uniformPanToStereo(N) : _,_
// ```
//
// Where:
//
// * `N`: Number of input channels to pan down to stereo, a constant numerical expression
//
// #### Demo
//
// ```
// _,_,_ : ef.uniformPanToStereo(3) : _,_
// ```
//
//------------------------------------------------------------
uniformPanToStereo(N) = si.bus(N) <: par(i,2*N,_) :
(par(i,N,*(i/(N-1))) :> _),
(par(i,N,*(1-i/(N-1))) :> _);
declare uniformPanToStereo author "Julius O. Smith III";
declare uniformPanToStereo license "STK-4.3";
//---------------------`(ef.)tapeStop`-----------------------------------------
// A tape-stop effect, like putting a finger on a vinyl record player.
//
// #### Usage:
//
// ```
// _,_ : tapeStop(2, LAGRANGE_ORDER, MAX_TIME_SAMP, crossfade, gainAlpha, stopAlpha, stopTime, stop) : _,_
// _ : tapeStop(1, LAGRANGE_ORDER, MAX_TIME_SAMP, crossfade, gainAlpha, stopAlpha, stopTime, stop) : _
// ```
//
// Where:
//
// * `C`: The number of input and output channels.
// * `LAGRANGE_ORDER`: The order of the Lagrange interpolation on the delay line. [2-3] recommended.
// * `MAX_TIME_SAMP`: Maximum stop time in samples
// * `crossfade`: A crossfade in samples to apply when resuming normal playback. Crossfade is not applied during the enabling of the tape-stop.
// * `gainAlpha`: During the tape-stop, lower alpha stays louder longer. Safe values are in the range [.01,2].
// * `stopAlpha`: `stopAlpha==1` represents a linear deceleration (constant force). `stopAlpha<1` represents an initially weaker, then stronger force. `stopAlpha>1` represents an initially stronger, then weaker force. Safe values are in the range [.01,2].
// * `stopTime`: Desired duration of the stop time, in samples.
// * `stop`: When `stop` becomes positive, the tape-stop effect will start. When `stop` becomes zero, normal audio will resume via crossfade.
//-----------------------------------------------------------------------------
tapeStop(C, LAGRANGE_ORDER, MAX_TIME_SAMP, crossfade, gainAlpha, stopAlpha, stopTime, stop) =
(tapeStopTick(C) ~ _) : !,si.bus(C)
with {
tapeStopTick(C, _delaySamples) = delaySamples, circuitFinal
with {
// Where `stopCounter` goes from 0 to stopTime (or higher)
// When `stopCounter` is 0, curve's output is 1.
// When `stopCounter` is stopTime, curve's output is 0.
curve(alpha) = 1-stopCounter/stopTime : max(0) : pow(_, alpha)
with {
// when stop is pulsed, count samples starting at 0
stopCounter = *(ba.if(stop&(1-stop'),0,1))+1~_ : -(1);
};
minDelay = (LAGRANGE_ORDER-1)/2;
delayFunc(curDel) = par(i, C, de.fdelayltv(LAGRANGE_ORDER, MAX_TIME_SAMP, max(curDel, minDelay)));
delaySamples = ba.if(stop&(1-stop'), minDelay, _delaySamples) + delayDelta
with {
/*
Velocity describes the velocity of the read-index in units of samples per sample.
If the velocity is 1, then the read-index is moving as fast as the write-index
is moving, and there is no delay. If the velocity is 0, then the read-index is "stuck"
on a particular location. During a tape-stop, our technique is to animate velocity
from 1 to 0 according to a curve based on stopAlpha. We discretize the accumulated
delay with delayDelta. Note that when velocity is zero, then delayDelta is 1. At this
moment the delay line wrote 1 new sample (as always), but our delayDelta INCREASED by one.
This means it's playing same sample twice in a row, and the record player is motionless.
When `stop` triggers by becoming 1, then delaySamples is reset to `minDelay`. At this moment
we should have already been listening to the circuitNormal which is using `minDelay`.
Therefore, there isn't a click.
*/
velocity = curve(stopAlpha);
delayDelta = 1-velocity;
};
circuitNormal = delayFunc(0); // Don't use si.bus(C) because of minDelay
circuitSlowdown = delayFunc(delaySamples) : par(i, C, _*g)
with {
g = curve(gainAlpha);
};
circuitFinal = ba.selectmulti(actualCrossfade, (circuitNormal, circuitSlowdown), stop)
with {
actualCrossfade = ba.if(stop,0,crossfade); // only crossfade when resuming normal playback
};
};
};
declare tapeStop author "David Braun";
declare tapeStop copyright "Copyright (C) 2024 by David Braun <[email protected]>";
declare tapeStop license "MIT-style STK-4.3 license";
//=======================================Pitch Shifting===================================
//========================================================================================
//--------------`(ef.)transpose`----------------
// A simple pitch shifter based on 2 delay lines.
// `transpose` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : transpose(w, x, s) : _
// ```
//
// Where:
//
// * `w`: the window length (samples)
// * `x`: crossfade duration duration (samples)
// * `s`: shift (semitones)
//-----------------------------------------
transpose(w, x, s, sig) = de.fdelay(maxDelay,d,sig)*ma.fmin(d/x,1) +
de.fdelay(maxDelay,d+w,sig)*(1-ma.fmin(d/x,1))
with {
maxDelay = 65536;
i = 1 - pow(2, s/12);
d = i : (+ : +(w) : fmod(_,w)) ~ _;
};
//=======================================Saturators=======================================
//========================================================================================
nonlinearityEnv = environment
{
// Turn a function f(x) into a odd function g(x) such that
// g(x)==f(x) for x>=0, AND g(x)==-g(-x).
makeOdd(f, x) = x : optionalNegate : f : optionalNegate
with {
optionalNegate(y) = ba.if(x<0, -y, y);
};
// Wavefolder/Wavefolding
// coded by David Braun