diff --git a/README.md b/README.md index 89dc81a..8bf866e 100644 --- a/README.md +++ b/README.md @@ -11,25 +11,24 @@ either with a BQ table or a Vertex Managed Dataset. The Python module syntax is:\ \ -`python -m vertex_proptrainer.train --segment --dataset --model_dir `\ +`python -m vertex_proptrainer.train --segment --dataset `\ \ where - "SEGMENT" is the propensity segment to be trained -- "DATASET" is the BQ table for training and evaluation -- "DIR" is the GCS URI/folder path to save model artifacts +- "DATASET" is the BQ table with data for training and evaluation Alternatively, if the dataset is already split into train and eval:\ \ -`python -m vertex_proptrainer.train --segment --train_data --eval_data --model_dir ` +`python -m vertex_proptrainer.train --segment --train_data --eval_data ` -If training with Vertex Managed Dataset, dataset is passed as an argument directly to the -CustomContainerTrainingJob or CustomContainerTrainingJobRunOp (Vertex Pipeline) and neither of -dataset, train_data or eval_data args is passed allowing the training script to pick the data -from default environment variables of Vertex AI. +If training with Vertex Managed Dataset in Vertex Kubeflow Pipelines, dataset is passed as an +argument directly to CustomContainerTrainingJobRunOp and neither of dataset, train_data or +eval_data args is passed allowing the trainer package to pick the data from default +environment variables - `os.environ["AIP_TRAINING_DATA_URI"]`, `os.environ["AIP_EVALUATION_DATA_URI"]`, +and `os.environ["AIP_TESTING_DATA_URI"]` - set by Vertex AI. -If training segments 115, 116 or prospects, a linear model is trained by default. -Otherwise, model is tree-based. +--- ## Optional arguments ### Tree-based model hyperparemeters @@ -53,12 +52,26 @@ Otherwise, model is tree-based. - --eta0: Initial learning rate. Not used if learning rate schedule is 'optimal' - --no_intercept: Fit model without an intercept +### Hyperparameter tuning +Tuning (using cloudml-hypertune package) is enabled by passing the "--hypertune" argument: + +`python -m vertex_proptrainer.train --segment= --dataset --hypertune` + +Tuning does not save artifacts at this time; functionality to be added in subsequent release(s) +to allow checkpointing, training resumption and tuning artifact saving to GCS. + ### Early stopping - --rounds: Number of rounds without evaluation improvement to trigger early stopping -Hyperparameter tuning (using cloudml-hypertune package) enabled by passing the "--hypertune" argument: +### Model artifact saving +- --model_dir: GCS URI to save model artifacts. If not provided, package will use Vertex AI +default environment variable `os.environ["AIP_MODEL_DIR"]`, and, if provided, must end with +"/model" +i.e.\ +`... --model_dir gs:////model` -`python -m vertex_proptrainer.train --segment= --dataset --hypertune ` +--- +## Building from Source Build package within src folder: diff --git a/src/README.md b/src/README.md index c2f424e..8bf866e 100644 --- a/src/README.md +++ b/src/README.md @@ -9,7 +9,7 @@ Custom Container Propensity model training in Vertex AI. This is a barebones solution to run model training in Vertex AI with training data either with a BQ table or a Vertex Managed Dataset. -The Python module run syntax is:\ +The Python module syntax is:\ \ `python -m vertex_proptrainer.train --segment --dataset `\ \ @@ -21,12 +21,14 @@ Alternatively, if the dataset is already split into train and eval:\ \ `python -m vertex_proptrainer.train --segment --train_data --eval_data ` -If training with a Vertex Managed Dataset within a Vertex Kubeflow Pipeline, dataset is -passed as an argument directly to the CustomContainerTrainingJobRunOp and neither of -dataset, train_data or eval_data args is passed as command line arguments allowing the -training script to pick the dataset(s) from default environment variables - -`os.environ["AIP_TRAINING_DATA_URI"]`, `os.environ["AIP_EVALUATION_DATA_URI"]`, and -`os.environ["AIP_TESTING_DATA_URI"]` - set by Vertex AI. + +If training with Vertex Managed Dataset in Vertex Kubeflow Pipelines, dataset is passed as an +argument directly to CustomContainerTrainingJobRunOp and neither of dataset, train_data or +eval_data args is passed allowing the trainer package to pick the data from default +environment variables - `os.environ["AIP_TRAINING_DATA_URI"]`, `os.environ["AIP_EVALUATION_DATA_URI"]`, +and `os.environ["AIP_TESTING_DATA_URI"]` - set by Vertex AI. + +--- ## Optional arguments ### Tree-based model hyperparemeters @@ -50,25 +52,27 @@ training script to pick the dataset(s) from default environment variables - - --eta0: Initial learning rate. Not used if learning rate schedule is 'optimal' - --no_intercept: Fit model without an intercept -### Early stopping -- --rounds: Number of rounds without evaluation improvement to trigger early stopping - ### Hyperparameter tuning -Tuning (using cloudml-hypertune package) enabled by passing the "--hypertune" argument: +Tuning (using cloudml-hypertune package) is enabled by passing the "--hypertune" argument: `python -m vertex_proptrainer.train --segment= --dataset --hypertune` -Tuning does not create artifacts at this time; subsequent releases will allow for checkpointing, saving artifacts and resuming training. -### Model artifact(s) save location -- --model_dir: GCS URI to save generated model and preprocessor files. If not provided, -training package uses the environment variable `os.environ["AIP_MODEL_DIR"]` set by -Vertex AI. If not provided, URI must end with "/model". +Tuning does not save artifacts at this time; functionality to be added in subsequent release(s) +to allow checkpointing, training resumption and tuning artifact saving to GCS. + +### Early stopping +- --rounds: Number of rounds without evaluation improvement to trigger early stopping + +### Model artifact saving +- --model_dir: GCS URI to save model artifacts. If not provided, package will use Vertex AI +default environment variable `os.environ["AIP_MODEL_DIR"]`, and, if provided, must end with +"/model" i.e.\ `... --model_dir gs:////model` --- - ## Building from Source + Build package within src folder: `cd src`\