-
Notifications
You must be signed in to change notification settings - Fork 1
/
hset2.ml
224 lines (193 loc) · 6.44 KB
/
hset2.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
module type SetOrderedType2 =
sig
type ('a, 'b) t
val compare : ('a, 'b) t -> ('c, 'd) t -> ('e, 'e) Ordering.ordering
end
module type S =
sig
type (_, _) elem
type t
type iter = {iter:'a 'b. ('a, 'b) elem -> unit}
type 'b fold = {fold:'a 'c. ('a, 'c) elem -> 'b -> 'b}
val empty : t
val is_empty : t -> bool
val singleton : ('a, 'b) elem -> t
val compare : t -> t -> int
val mem : ('a, 'b) elem -> t -> bool
val add : ('a, 'b) elem -> t -> t
val union : t -> t -> t
val cardinal : t -> int
val iter : iter -> t -> unit
val fold : 'a fold -> t -> 'a -> 'a
end
module Make (Ord: SetOrderedType2) : S with type ('a, 'b) elem = ('a, 'b) Ord.t =
struct
type ('a, 'b) elem = ('a, 'b) Ord.t
type box = Box : ('a, 'b) elem -> box (* handle scope escaping *)
(* Borrowed and adapted from OCaml's standard library. The OCaml
license (LGPL version 2 with linking exception) applies. *)
type t =
Empty
| Node : t * ('a, 'b) elem * t * int -> t
type iter = {iter:'a 'b. ('a, 'b) elem -> unit}
type 'b fold = {fold:'a 'c. ('a, 'c) elem -> 'b -> 'b}
let make_box : type a b. (a, b) elem -> box = fun elem -> Box elem
let empty = Empty
let is_empty = function
| Empty -> true
| _ -> false
let singleton e = Node (Empty, e, Empty, 1)
let height = function
Empty -> 0
| Node(_,_,_,h) -> h
let create : 'a 'b. t -> ('a, 'b) elem -> t -> t =
fun l x r ->
let hl = height l and hr = height r in
Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))
let bal : 'a 'b. t -> ('a, 'b) elem -> t -> t =
fun l x r ->
let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Hmap.bal"
| Node(ll, lv, lr, _) ->
if height ll >= height lr then
create ll lv (create lr x r)
else begin
match lr with
Empty -> invalid_arg "Hmap.bal"
| Node(lrl, lrv, lrr, _)->
create (create ll lv lrl) lrv (create lrr x r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Hmap.bal"
| Node(rl, rv, rr, _) ->
if height rr >= height rl then
create (create l x rl) rv rr
else begin
match rl with
Empty -> invalid_arg "Hmap.bal"
| Node(rll, rlv, rlr, _) ->
create (create l x rll) rlv (create rlr rv rr)
end
end else
Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))
let rec add : type a b. (a, b) elem -> t -> t =
fun x -> function
Empty ->
Node(Empty, x, Empty, 1)
| Node(l, v, r, h) ->
match Ord.compare x v with
| Ordering.EQ ->
Node(l, x, r, h)
| Ordering.LT ->
let ll = add x l in
bal ll v r
| Ordering.GT ->
let rr = add x r in
bal l v rr
let rec mem : type a b. (a, b) elem -> t -> bool =
fun x -> function
Empty ->
false
| Node(l, v, r, _) -> begin
match Ord.compare x v with
Ordering.EQ -> true
| Ordering.LT -> mem x l
| Ordering.GT -> mem x r
end
let singleton : type a b. (a, b) elem -> t = fun k ->
Node (Empty, k, Empty, 1)
let rec add_min_element : type a b. (a, b) elem -> t -> t =
fun k t ->
match t with
| Empty -> singleton k
| Node (l, k', r, h) ->
bal (add_min_element k l) k' r
let rec add_max_element : type a b. (a, b) elem -> t -> t =
fun k t ->
match t with
| Empty -> singleton k
| Node (l, k', r, h) ->
bal l k' (add_min_element k r)
let rec join l k r =
match (l, r) with
| (Empty, _) -> add_min_element k r
| (_, Empty) -> add_max_element k l
| Node (ll, lk, lr, lh), Node(rl, rk, rr, rh) ->
if lh > rh + 2 then bal ll lk (join lr k r) else
if rh > lh + 2 then bal (join l k rl) rk rr else
create l k r
let rec min_elt = function
| Empty -> raise Not_found
| Node (Empty, k, r, _) -> make_box k
| Node (l, k, r, _) -> min_elt l
let rec max_elt = function
| Empty -> raise Not_found
| Node (l, k, Empty, _) -> make_box k
| Node (l, k, r, _) -> max_elt r
let rec split : type a b. (a, b) elem -> t -> (t * bool * t) = fun k t ->
match t with
| Empty -> Empty, false, Empty
| Node (l, k', r, _) -> begin
match Ord.compare k k' with
| Ordering.EQ -> l, true, r
| Ordering.LT ->
let ll, pres, rl = split k l in
ll, pres, join rl k' r
| Ordering.GT ->
let lr, pres, rr = split k r in
join l k' lr, pres, rr
end
let rec union : t -> t -> t = fun t1 t2 ->
match (t1, t2) with
| Empty, t2 -> t2
| t1, Empty -> t1
| Node (l1, k1, r1, h1), Node (l2, k2, r2, h2) ->
if h1 >= h2 then
if h2 = 1 then add k2 t1 else begin
let (l2, _, r2) = split k1 t2 in
join (union l1 l2) k1 (union r1 r2)
end
else
if h1 = 1 then add k1 t2 else begin
let (l1, _, r1) = split k2 t1 in
join (union l1 l2) k2 (union r1 r2)
end
let rec cardinal = function
| Empty -> 0
| Node (l, _, r, _) -> 1 + cardinal l + cardinal r
let rec iter it = function
| Empty -> ()
| Node (l, k, r, _) -> iter it l; it.iter k; iter it r
let rec fold fd t acc =
match t with
| Empty -> acc
| Node (l, v, r, _) -> fold fd r (fd.fold v (fold fd l acc))
(* basically, the following two functions are fucked up *)
let rec subset s1 s2 =
match s1, s2 with
| Empty, _ -> true
| _, Empty -> false
| Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) -> begin
match Ord.compare v1 v2 with
| Ordering.EQ -> subset l1 l2 && subset r1 r2
| Ordering.LT -> subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2
| Ordering.GT -> subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2
end
(* this is how normies compare two sets, damn! *)
let compare s1 s2 =
let f1: type a b. (a, b) elem -> bool -> bool =
fun e accb -> accb && mem e s1 in
let f2: type a b. (a, b) elem -> bool -> bool =
fun e accb -> accb && mem e s2 in
let b1 = fold {fold = f1} s2 true in
let b2 = fold {fold = f2} s1 true in
match b1, b2 with
| true, true -> 0
| true, false -> 1
| false, true -> -1
| false, false -> 1
end