forked from ucbdrive/dla
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_transforms.py
503 lines (420 loc) · 16.1 KB
/
data_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import math
import numbers
import pdb
import random
import numpy as np
from PIL import Image, ImageOps, ImageEnhance
import torch
def resize(img, size, interpolation=Image.BILINEAR):
"""Resize the input PIL Image to the given size.
"""
if isinstance(size, int):
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), interpolation)
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), interpolation)
else:
return img.resize(size[::-1], interpolation)
def crop(img, i, j, h, w):
"""Crop the given PIL Image.
Args:
img (PIL Image): Image to be cropped.
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
Returns:
PIL Image: Cropped image.
"""
return img.crop((j, i, j + w, i + h))
def resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR):
"""Crop the given PIL Image and resize it to desired size.
Notably used in RandomResizedCrop.
Args:
img (PIL Image): Image to be cropped.
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
size (sequence or int): Desired output size.
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``.
Returns:
PIL Image: Cropped image.
"""
img = crop(img, i, j, h, w)
img = resize(img, size, interpolation)
return img
class RandomResizedCrop(object):
"""Crop the given PIL Image to random size and aspect ratio.
A crop of random size of (0.08 to 1.0) of the original size and a random
aspect ratio of 3/4 to 4/3 of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: expected output size of each edge
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self, size, interpolation=Image.BILINEAR,
min_area_ratio=0.08, aspect_ratio=4./3):
self.size = (size, size)
self.interpolation = interpolation
self.min_area_ratio = min_area_ratio
self.aspect_ratio = aspect_ratio
def get_params(self, img):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (PIL Image): Image to be cropped.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
for attempt in range(10):
area = img.size[0] * img.size[1]
target_area = random.uniform(self.min_area_ratio, 1.0) * area
aspect_ratio = random.uniform(
1 / self.aspect_ratio, self.aspect_ratio)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img.size[0] and h <= img.size[1]:
i = random.randint(0, img.size[1] - h)
j = random.randint(0, img.size[0] - w)
return i, j, h, w
# Fallback
w = min(img.size[0], img.size[1])
i = (img.size[1] - w) // 2
j = (img.size[0] - w) // 2
return i, j, w, w
def __call__(self, img, *args):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly cropped and resize image.
"""
i, j, h, w = self.get_params(img)
return (resized_crop(img, i, j, h, w, self.size, self.interpolation),
*args)
class RandomCrop(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, image, label, *args):
assert label is None or image.size == label.size
w, h = image.size
tw, th = self.size
top = bottom = left = right = 0
if w < tw:
left = (tw - w) // 2
right = tw - w - left
if h < th:
top = (th - h) // 2
bottom = th - h - top
if left > 0 or right > 0 or top > 0 or bottom > 0:
label = pad_image(
'constant', label, top, bottom, left, right, value=255)
image = pad_image(
'reflection', image, top, bottom, left, right)
w, h = image.size
if w == tw and h == th:
return (image, label, *args)
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
results = [image.crop((x1, y1, x1 + tw, y1 + th))]
if label is not None:
results.append(label.crop((x1, y1, x1 + tw, y1 + th)))
results.extend(args)
return results
class RandomScale(object):
def __init__(self, scale):
if isinstance(scale, numbers.Number):
scale = [1 / scale, scale]
self.scale = scale
def __call__(self, image, label):
ratio = random.uniform(self.scale[0], self.scale[1])
w, h = image.size
tw = int(ratio * w)
th = int(ratio * h)
if ratio == 1:
return image, label
elif ratio < 1:
interpolation = Image.ANTIALIAS
else:
interpolation = Image.CUBIC
return image.resize((tw, th), interpolation), \
label.resize((tw, th), Image.NEAREST)
class RandomRotate(object):
"""Crops the given PIL.Image at a random location to have a region of
the given size. size can be a tuple (target_height, target_width)
or an integer, in which case the target will be of a square shape
(size, size)
"""
def __init__(self, angle):
self.angle = angle
def __call__(self, image, label=None, *args):
assert label is None or image.size == label.size
w, h = image.size
p = max((h, w))
angle = random.randint(0, self.angle * 2) - self.angle
if label is not None:
label = pad_image('constant', label, h, h, w, w, value=255)
label = label.rotate(angle, resample=Image.NEAREST)
label = label.crop((w, h, w + w, h + h))
image = pad_image('reflection', image, h, h, w, w)
image = image.rotate(angle, resample=Image.BILINEAR)
image = image.crop((w, h, w + w, h + h))
return image, label
class RandomHorizontalFlip(object):
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
"""
def __call__(self, image, label=None):
if random.random() < 0.5:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
if label:
label = label.transpose(Image.FLIP_LEFT_RIGHT)
if label:
return image, label
else:
return image,
class Normalize(object):
"""Given mean: (R, G, B) and std: (R, G, B),
will normalize each channel of the torch.*Tensor, i.e.
channel = (channel - mean) / std
"""
def __init__(self, mean, std):
self.mean = torch.FloatTensor(mean)
self.std = torch.FloatTensor(std)
def __call__(self, image, label=None):
for t, m, s in zip(image, self.mean, self.std):
t.sub_(m).div_(s)
if label is None:
return image
else:
return image, label
def pad_reflection(image, top, bottom, left, right):
if top == 0 and bottom == 0 and left == 0 and right == 0:
return image
h, w = image.shape[:2]
next_top = next_bottom = next_left = next_right = 0
if top > h - 1:
next_top = top - h + 1
top = h - 1
if bottom > h - 1:
next_bottom = bottom - h + 1
bottom = h - 1
if left > w - 1:
next_left = left - w + 1
left = w - 1
if right > w - 1:
next_right = right - w + 1
right = w - 1
new_shape = list(image.shape)
new_shape[0] += top + bottom
new_shape[1] += left + right
new_image = np.empty(new_shape, dtype=image.dtype)
new_image[top:top+h, left:left+w] = image
new_image[:top, left:left+w] = image[top:0:-1, :]
new_image[top+h:, left:left+w] = image[-1:-bottom-1:-1, :]
new_image[:, :left] = new_image[:, left*2:left:-1]
new_image[:, left+w:] = new_image[:, -right-1:-right*2-1:-1]
return pad_reflection(new_image, next_top, next_bottom,
next_left, next_right)
def pad_constant(image, top, bottom, left, right, value):
if top == 0 and bottom == 0 and left == 0 and right == 0:
return image
h, w = image.shape[:2]
new_shape = list(image.shape)
new_shape[0] += top + bottom
new_shape[1] += left + right
new_image = np.empty(new_shape, dtype=image.dtype)
new_image.fill(value)
new_image[top:top+h, left:left+w] = image
return new_image
def pad_image(mode, image, top, bottom, left, right, value=0):
if mode == 'reflection':
return Image.fromarray(
pad_reflection(np.asarray(image), top, bottom, left, right))
elif mode == 'constant':
return Image.fromarray(
pad_constant(np.asarray(image), top, bottom, left, right, value))
else:
raise ValueError('Unknown mode {}'.format(mode))
class Pad(object):
"""Pads the given PIL.Image on all sides with the given "pad" value"""
def __init__(self, padding, fill=0):
assert isinstance(padding, numbers.Number)
assert isinstance(fill, numbers.Number) or isinstance(fill, str) or \
isinstance(fill, tuple)
self.padding = padding
self.fill = fill
def __call__(self, image, label=None, *args):
if label is not None:
label = pad_image(
'constant', label,
self.padding, self.padding, self.padding, self.padding,
value=255)
if self.fill == -1:
image = pad_image(
'reflection', image,
self.padding, self.padding, self.padding, self.padding)
else:
image = pad_image(
'constant', image,
self.padding, self.padding, self.padding, self.padding,
value=self.fill)
return (image, label, *args)
class PadToSize(object):
"""Pads the given PIL.Image on all sides with the given "pad" value"""
def __init__(self, side, fill=-1):
assert isinstance(side, numbers.Number)
assert isinstance(fill, numbers.Number) or isinstance(fill, str) or \
isinstance(fill, tuple)
self.side = side
self.fill = fill
def __call__(self, image, label=None, *args):
w, h = image.size
s = self.side
assert s >= w and s >= h
top, left = (s - h) // 2, (s - w) // 2
bottom = s - h - top
right = s - w - left
if label is not None:
label = pad_image('constant', label, top, bottom, left, right,
value=255)
if self.fill == -1:
image = pad_image('reflection', image, top, bottom, left, right)
else:
image = pad_image('constant', image, top, bottom, left, right,
value=self.fill)
return (image, label, *args)
class PadImage(object):
def __init__(self, padding, fill=0):
assert isinstance(padding, numbers.Number)
assert isinstance(fill, numbers.Number) or isinstance(fill, str) or \
isinstance(fill, tuple)
self.padding = padding
self.fill = fill
def __call__(self, image, label=None, *args):
if self.fill == -1:
image = pad_image_reflection(
image, self.padding, self.padding, self.padding, self.padding)
else:
image = ImageOps.expand(image, border=self.padding, fill=self.fill)
return (image, label, *args)
class ToTensor(object):
"""Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range
[0.0, 1.0].
"""
def __call__(self, pic, label=None):
if isinstance(pic, np.ndarray):
# handle numpy array
img = torch.from_numpy(pic)
else:
# handle PIL Image
img = torch.ByteTensor(
torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
img = img.float().div(255)
if label is None:
return (img,)
else:
return img, torch.LongTensor(np.array(label, dtype=np.int))
class Compose(object):
"""Composes several transforms together.
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, *args):
for t in self.transforms:
args = t(*args)
return args
class Lighting(object):
def __init__(self, alphastd, eigval, eigvec):
self.alphastd = alphastd
self.eigval = np.array(eigval)
self.eigvec = np.array(eigvec)
def __call__(self, image, *args):
if self.alphastd == 0:
return (image, *args)
alpha = np.random.randn(3) * self.alphastd
rgb = (self.eigvec @ np.diag(alpha * self.eigval)).sum(axis=1).\
round().astype(np.int32)
image = np.asarray(image)
image_type = image.dtype
image = Image.fromarray(
np.clip(image.astype(np.int32) + rgb, 0, 255).astype(image_type))
return (image, *args)
class RandomBrightness(object):
def __init__(self, var=0.4):
self.var = var
def __call__(self, image, *args):
alpha = 1.0 + np.random.uniform(-self.var, self.var)
image = ImageEnhance.Brightness(image).enhance(alpha)
return (image, *args)
class RandomColor(object):
def __init__(self, var=0.4):
self.var = var
def __call__(self, image, *args):
alpha = 1.0 + np.random.uniform(-self.var, self.var)
image = ImageEnhance.Color(image).enhance(alpha)
return (image, *args)
class RandomContrast(object):
def __init__(self, var=0.4):
self.var = var
def __call__(self, image, *args):
alpha = 1.0 + np.random.uniform(-self.var, self.var)
image = ImageEnhance.Contrast(image).enhance(alpha)
return (image, *args)
class RandomSharpness(object):
def __init__(self, var=0.4):
self.var = var
def __call__(self, image, *args):
alpha = 1.0 + np.random.uniform(-self.var, self.var)
image = ImageEnhance.Sharpness(image).enhance(alpha)
return (image, *args)
class RandomChannel(object):
def __init__(self):
pass
def __call__(self, image, *args):
order = np.random.permutation(range(3))
image = np.asarray(image)
out_image = np.empty(image.shape, dtype=image.dtype)
for i in range(3):
out_image[:, :, i] = image[:, :, order[i]]
return (Image.fromarray(out_image), *args)
class RandomJitter(object):
def __init__(self, brightness, contrast, sharpness):
self.jitter_funcs = []
if brightness > 0:
self.jitter_funcs.append(RandomBrightness(brightness))
if contrast > 0:
self.jitter_funcs.append(RandomContrast(contrast))
if sharpness > 0:
self.jitter_funcs.append(RandomSharpness(sharpness))
def __call__(self, image, *args):
if len(self.jitter_funcs) == 0:
return (image, *args)
order = np.random.permutation(range(len(self.jitter_funcs)))
for i in range(len(order)):
image = self.jitter_funcs[order[i]](image)[0]
return (image, *args)