-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustered_network.py
74 lines (57 loc) · 1.67 KB
/
clustered_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import numpy as np
from joblib import Parallel, delayed
from lcs import *
data_dir = "Data/clustered_network"
os.makedirs(data_dir, exist_ok=True)
for f in os.listdir(data_dir):
os.remove(os.path.join(data_dir, f))
n_processes = len(os.sched_getaffinity(0))
# contagion functions and parameters
cf1 = lambda nu, b: 1 - (1 - b) ** nu # simple contagion
cf2 = lambda nu, b: b * (nu >= 2) # complex contagion, tau=2
cf3 = lambda nu, b: b * (nu >= 3) # complex contagion, tau=3
cfs = [cf1, cf2, cf3]
realizations = 10
n_c = 20
n_b = 33
n = 50
k = 2 # each node belongs to two cliques
clique_size = np.arange(1, n_c)
beta_list = np.linspace(0.0, 1.0, n_b)
k1 = k * np.ones(n)
rho0 = 1.0
gamma = 0.1
tmax = 2000
# MCMC parameters
burn_in = 100000
nsamples = 100
skip = 10000
p_c = np.ones((2, n))
p_rho = np.array([1, 1])
arglist = []
for i, cf in enumerate(cfs):
for b in beta_list:
c = cf(np.arange(n), b)
for s in clique_size:
num_cliques = round(sum(k1) / s)
k2 = s * np.ones(num_cliques)
for r in range(realizations):
A = clustered_network(k1, k2)
arglist.append(
(
f"{data_dir}/{i}_{b}_{s}_{r}",
gamma,
c,
b,
rho0,
A,
tmax,
p_c,
p_rho,
nsamples,
burn_in,
skip,
)
)
Parallel(n_jobs=n_processes)(delayed(single_inference)(*arg) for arg in arglist)