-
Notifications
You must be signed in to change notification settings - Fork 6
/
nep-0038-SIMD-optimizations.html
877 lines (688 loc) · 50.1 KB
/
nep-0038-SIMD-optimizations.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
<!DOCTYPE html>
<html lang="en" data-content_root="./" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>NEP 38 — Using SIMD optimization instructions for performance — NumPy Enhancement Proposals</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=26a4bc78f4c0ddb94549" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=26a4bc78f4c0ddb94549" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=26a4bc78f4c0ddb94549"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=26a4bc78f4c0ddb94549" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=26a4bc78f4c0ddb94549" />
<script src="_static/documentation_options.js?v=7f41d439"></script>
<script src="_static/doctools.js?v=888ff710"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'nep-0038-SIMD-optimizations';</script>
<link rel="icon" href="_static/favicon.ico"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="NEP 40 — Legacy datatype implementation in NumPy" href="nep-0040-legacy-datatype-impl.html" />
<link rel="prev" title="NEP 35 — Array creation dispatching with __array_function__" href="nep-0035-array-creation-dispatch-with-array-function.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="" />
<meta name="docbuild:last-update" content="Nov 15, 2024"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="content.html">
<img src="_static/numpylogo.svg" class="logo__image only-light" alt="NumPy Enhancement Proposals - Home"/>
<img src="_static/numpylogo.svg" class="logo__image only-dark pst-js-only" alt="NumPy Enhancement Proposals - Home"/>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wish list
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wish list
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="scope.html">The Scope of NumPy</a></li>
<li class="toctree-l1"><a class="reference internal" href="roadmap.html">Current roadmap</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">Wish list</a></li>
</ul>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="meta.html">Meta-NEPs (NEPs about NEPs or active Processes)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0000.html">NEP 0 — Purpose and process</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0023-backwards-compatibility.html">NEP 23 — Backwards compatibility and deprecation policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0036-fair-play.html">NEP 36 — Fair play</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0045-c_style_guide.html">NEP 45 — C style guide</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0046-sponsorship-guidelines.html">NEP 46 — NumPy sponsorship guidelines</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0048-spending-project-funds.html">NEP 48 — Spending NumPy project funds</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-template.html">NEP X — Template and instructions</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="provisional.html">Provisional NEPs (provisionally accepted; interface may change)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="simple">
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="accepted.html">Accepted NEPs (implementation in progress)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0041-improved-dtype-support.html">NEP 41 — First step towards a new datatype system</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0042-new-dtypes.html">NEP 42 — New and extensible DTypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0044-restructuring-numpy-docs.html">NEP 44 — Restructuring the NumPy documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0051-scalar-representation.html">NEP 51 — Changing the representation of NumPy scalars</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="open.html">Open NEPs (under consideration)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0043-extensible-ufuncs.html">NEP 43 — Enhancing the extensibility of UFuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0053-c-abi-evolution.html">NEP 53 — Evolving the NumPy C-API for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0054-simd-cpp-highway.html">NEP 54 — SIMD infrastructure evolution: adopting Google Highway when moving to C++?</a></li>
</ul>
</details></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="finished.html">Finished NEPs</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="nep-0001-npy-format.html">NEP 1 — A simple file format for NumPy arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0005-generalized-ufuncs.html">NEP 5 — Generalized universal functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0007-datetime-proposal.html">NEP 7 — A proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0010-new-iterator-ufunc.html">NEP 10 — Optimizing iterator/UFunc performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0013-ufunc-overrides.html">NEP 13 — A mechanism for overriding Ufuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0014-dropping-python2.7-proposal.html">NEP 14 — Plan for dropping Python 2.7 support</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0015-merge-multiarray-umath.html">NEP 15 — Merging multiarray and umath</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0018-array-function-protocol.html">NEP 18 — A dispatch mechanism for NumPy's high level array functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0019-rng-policy.html">NEP 19 — Random number generator policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0020-gufunc-signature-enhancement.html">NEP 20 — Expansion of generalized universal function signatures</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0022-ndarray-duck-typing-overview.html">NEP 22 — Duck typing for NumPy arrays – high level overview</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0027-zero-rank-arrarys.html">NEP 27 — Zero rank arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0028-website-redesign.html">NEP 28 — numpy.org website redesign</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0029-deprecation_policy.html">NEP 29 — Recommend Python and NumPy version support as a community policy standard</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0032-remove-financial-functions.html">NEP 32 — Remove the financial functions from NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0034-infer-dtype-is-object.html">NEP 34 — Disallow inferring ``dtype=object`` from sequences</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0035-array-creation-dispatch-with-array-function.html">NEP 35 — Array creation dispatching with __array_function__</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">NEP 38 — Using SIMD optimization instructions for performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0040-legacy-datatype-impl.html">NEP 40 — Legacy datatype implementation in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0049.html">NEP 49 — Data allocation strategies</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0050-scalar-promotion.html">NEP 50 — Promotion rules for Python scalars</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0052-python-api-cleanup.html">NEP 52 — Python API cleanup for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0055-string_dtype.html">NEP 55 — Add a UTF-8 variable-width string DType to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0056-array-api-main-namespace.html">NEP 56 — Array API standard support in NumPy's main namespace</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="deferred.html">Deferred and Superseded NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0002-warnfix.html">NEP 2 — A proposal to build numpy without warning with a big set of warning flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0003-math_config_clean.html">NEP 3 — Cleaning the math configuration of numpy.core</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0004-datetime-proposal3.html">NEP 4 — A (third) proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0006-newbugtracker.html">NEP 6 — Replacing Trac with a different bug tracker</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0008-groupby_additions.html">NEP 8 — A proposal for adding groupby functionality to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0009-structured_array_extensions.html">NEP 9 — Structured array extensions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0011-deferred-ufunc-evaluation.html">NEP 11 — Deferred UFunc evaluation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0012-missing-data.html">NEP 12 — Missing data functionality in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0021-advanced-indexing.html">NEP 21 — Simplified and explicit advanced indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0024-missing-data-2.html">NEP 24 — Missing data functionality - alternative 1 to NEP 12</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0025-missing-data-3.html">NEP 25 — NA support via special dtypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0026-missing-data-summary.html">NEP 26 — Summary of missing data NEPs and discussion</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0030-duck-array-protocol.html">NEP 30 — Duck typing for NumPy arrays - implementation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0031-uarray.html">NEP 31 — Context-local and global overrides of the NumPy API</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0037-array-module.html">NEP 37 — A dispatch protocol for NumPy-like modules</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0047-array-api-standard.html">NEP 47 — Adopting the array API standard</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="rejected.html">Rejected and Withdrawn NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0016-abstract-array.html">NEP 16 — An abstract base class for identifying "duck arrays"</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0017-split-out-maskedarray.html">NEP 17 — Split out masked arrays</a></li>
</ul>
</details></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="content.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">Roadmap & NumPy enhancement proposals</a></li>
<li class="breadcrumb-item"><a href="finished.html" class="nav-link">Finished NEPs</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">NEP 38 — Using SIMD optimization instructions for performance</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="nep-38-using-simd-optimization-instructions-for-performance">
<span id="nep38"></span><h1>NEP 38 — Using SIMD optimization instructions for performance<a class="headerlink" href="#nep-38-using-simd-optimization-instructions-for-performance" title="Link to this heading">#</a></h1>
<dl class="field-list simple">
<dt class="field-odd">Author<span class="colon">:</span></dt>
<dd class="field-odd"><p>Sayed Adel, Matti Picus, Ralf Gommers</p>
</dd>
<dt class="field-even">Status<span class="colon">:</span></dt>
<dd class="field-even"><p>Final</p>
</dd>
<dt class="field-odd">Type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Standards</p>
</dd>
<dt class="field-even">Created<span class="colon">:</span></dt>
<dd class="field-even"><p>2019-11-25</p>
</dd>
<dt class="field-odd">Resolution<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference external" href="https://mail.python.org/archives/list/numpy-discussion@python.org/thread/PVWJ74UVBRZ5ZWF6MDU7EUSJXVNILAQB/#PVWJ74UVBRZ5ZWF6MDU7EUSJXVNILAQB">https://mail.python.org/archives/list/numpy-discussion@python.org/thread/PVWJ74UVBRZ5ZWF6MDU7EUSJXVNILAQB/#PVWJ74UVBRZ5ZWF6MDU7EUSJXVNILAQB</a></p>
</dd>
</dl>
<section id="abstract">
<h2>Abstract<a class="headerlink" href="#abstract" title="Link to this heading">#</a></h2>
<p>While compilers are getting better at using hardware-specific routines to
optimize code, they sometimes do not produce optimal results. Also, we would
like to be able to copy binary optimized C-extension modules from one machine
to another with the same base architecture (x86, ARM, or PowerPC) but with
different capabilities without recompiling.</p>
<p>We have a mechanism in the ufunc machinery to <a class="reference external" href="https://github.com/numpy/numpy/blob/v1.17.4/numpy/core/code_generators/generate_umath.py#L50">build alternative loops</a>
indexed by CPU feature name. At import (in <code class="docutils literal notranslate"><span class="pre">InitOperators</span></code>), the loop
function that matches the run-time CPU info <a class="reference external" href="https://github.com/numpy/numpy/blob/v1.17.4/numpy/core/code_generators/generate_umath.py#L1038">is chosen</a> from the candidates.This
NEP proposes a mechanism to build on that for many more features and
architectures. The steps proposed are to:</p>
<ul class="simple">
<li><p>Establish a set of well-defined, architecture-agnostic, universal intrinsics
which capture features available across architectures.</p></li>
<li><p>Capture these universal intrinsics in a set of C macros and use the macros
to build code paths for sets of features from the baseline up to the maximum
set of features available on that architecture. Offer these as a limited
number of compiled alternative code paths.</p></li>
<li><p>At runtime, discover which CPU features are available, and choose from among
the possible code paths accordingly.</p></li>
</ul>
</section>
<section id="motivation-and-scope">
<h2>Motivation and scope<a class="headerlink" href="#motivation-and-scope" title="Link to this heading">#</a></h2>
<p>Traditionally NumPy has depended on compilers to generate optimal code
specifically for the target architecture.
However few users today compile NumPy locally for their machines. Most use the
binary packages which must provide run-time support for the lowest-common
denominator CPU architecture. Thus NumPy cannot take advantage of
more advanced features of their CPU processors, since they may not be available
on all users’ systems.</p>
<p>Traditionally, CPU features have been exposed through <a class="reference external" href="https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intrinsics">intrinsics</a> which are
compiler-specific instructions that map directly to assembly instructions.
Recently there were discussions about the effectiveness of adding more
intrinsics (e.g., <a class="reference external" href="https://github.com/numpy/numpy/pull/11113">gh-11113</a> for AVX optimizations for floats). In the past,
architecture-specific code was added to NumPy for <a class="reference external" href="https://github.com/numpy/numpy/pulls?q=is%3Apr+avx512+is%3Aclosed">fast avx512 routines</a> in
various ufuncs, using the mechanism described above to choose the best loop
for the architecture. However the code is not generic and does not generalize
to other architectures.</p>
<p>Recently, OpenCV moved to using <a class="reference external" href="https://docs.opencv.org/master/df/d91/group__core__hal__intrin.html">universal intrinsics</a> in the Hardware
Abstraction Layer (HAL) which provided a nice abstraction for common shared
Single Instruction Multiple Data (SIMD) constructs. This NEP proposes a similar
mechanism for NumPy. There are three stages to using the mechanism:</p>
<ul class="simple">
<li><p>Infrastructure is provided in the code for abstract intrinsics. The ufunc
machinery will be extended using sets of these abstract intrinsics, so that
a single ufunc will be expressed as a set of loops, going from a minimal to
a maximal set of possibly available intrinsics.</p></li>
<li><p>At compile time, compiler macros and CPU detection are used to turn the
abstract intrinsics into concrete intrinsic calls. Any intrinsics not
available on the platform, either because the CPU does not support them
(and so cannot be tested) or because the abstract intrinsic does not have a
parallel concrete intrinsic on the platform will not error, rather the
corresponding loop will not be produced and added to the set of
possibilities.</p></li>
<li><p>At runtime, the CPU detection code will further limit the set of loops
available, and the optimal one will be chosen for the ufunc.</p></li>
</ul>
<p>The current NEP proposes only to use the runtime feature detection and optimal
loop selection mechanism for ufuncs. Future NEPS may propose other uses for the
proposed solution.</p>
<p>The ufunc machinery already has the ability to select an optimal loop for
specifically available CPU features at runtime, currently used for <code class="docutils literal notranslate"><span class="pre">avx2</span></code>,
<code class="docutils literal notranslate"><span class="pre">fma</span></code> and <code class="docutils literal notranslate"><span class="pre">avx512f</span></code> loops (in the generated <code class="docutils literal notranslate"><span class="pre">__umath_generated.c</span></code> file);
universal intrinsics would extend the generated code to include more loop
variants.</p>
</section>
<section id="usage-and-impact">
<h2>Usage and impact<a class="headerlink" href="#usage-and-impact" title="Link to this heading">#</a></h2>
<p>The end user will be able to get a list of intrinsics available for their
platform and compiler. Optionally,
the user may be able to specify which of the loops available at runtime will be
used, perhaps via an environment variable to enable benchmarking the impact of
the different loops. There should be no direct impact to naive end users, the
results of all the loops should be identical to within a small number (1-3?)
ULPs. On the other hand, users with more powerful machines should notice a
significant performance boost.</p>
<section id="binary-releases-wheels-on-pypi-and-conda-packages">
<h3>Binary releases - wheels on PyPI and conda packages<a class="headerlink" href="#binary-releases-wheels-on-pypi-and-conda-packages" title="Link to this heading">#</a></h3>
<p>The binaries released by this process will be larger since they include all
possible loops for the architecture. Some packagers may prefer to limit the
number of loops in order to limit the size of the binaries, we would hope they
would still support a wide range of families of architectures. Note this
problem already exists in the Intel MKL offering, where the binary package
includes an extensive set of alternative shared objects (DLLs) for various CPU
alternatives.</p>
</section>
<section id="source-builds">
<h3>Source builds<a class="headerlink" href="#source-builds" title="Link to this heading">#</a></h3>
<p>See “Detailed Description” below. A source build where the packager knows
details of the target machine could theoretically produce a smaller binary by
choosing to compile only the loops needed by the target via command line
arguments.</p>
</section>
<section id="how-to-run-benchmarks-to-assess-performance-benefits">
<h3>How to run benchmarks to assess performance benefits<a class="headerlink" href="#how-to-run-benchmarks-to-assess-performance-benefits" title="Link to this heading">#</a></h3>
<p>Adding more code which use intrinsics will make the code harder to maintain.
Therefore, such code should only be added if it yields a significant
performance benefit. Assessing this performance benefit can be nontrivial.
To aid with this, the implementation for this NEP will add a way to select
which instruction sets can be used at <em>runtime</em> via environment variables.
(name TBD). This ability is critical for CI code verification.</p>
</section>
<section id="diagnostics">
<h3>Diagnostics<a class="headerlink" href="#diagnostics" title="Link to this heading">#</a></h3>
<p>A new dictionary <code class="docutils literal notranslate"><span class="pre">__cpu_features__</span></code> will be available to python. The keys are
the available features, the value is a boolean whether the feature is available
or not. Various new private
C functions will be used internally to query available features. These
might be exposed via specific c-extension modules for testing.</p>
</section>
<section id="workflow-for-adding-a-new-cpu-architecture-specific-optimization">
<h3>Workflow for adding a new CPU architecture-specific optimization<a class="headerlink" href="#workflow-for-adding-a-new-cpu-architecture-specific-optimization" title="Link to this heading">#</a></h3>
<p>NumPy will always have a baseline C implementation for any code that may be
a candidate for SIMD vectorization. If a contributor wants to add SIMD
support for some architecture (typically the one of most interest to them),
this comment is the beginning of a tutorial on how to do so:
<a class="github reference external" href="https://github.com/numpy/numpy/pull/13516#issuecomment-558859638">numpy/numpy#13516</a></p>
<p id="tradeoffs">As of this moment, NumPy has a number of <code class="docutils literal notranslate"><span class="pre">avx512f</span></code> and <code class="docutils literal notranslate"><span class="pre">avx2</span></code> and <code class="docutils literal notranslate"><span class="pre">fma</span></code>
SIMD loops for many ufuncs. These would likely be the first candidates
to be ported to universal intrinsics. The expectation is that the new
implementation may cause a regression in benchmarks, but not increase the
size of the binary. If the regression is not minimal, we may choose to keep
the X86-specific code for that platform and use the universal intrinsic code
for other platforms.</p>
<p>Any new PRs to implement ufuncs using intrinsics will be expected to use the
universal intrinsics. If it can be demonstrated that the use of universal
intrinsics is too awkward or is not performant enough, platform specific code
may be accepted as well. In rare cases, a single-platform only PR may be
accepted, but it would have to be examined within the framework of preferring
a solution using universal intrinsics.</p>
<p>The subjective criteria for accepting new loops are:</p>
<ul class="simple">
<li><p>correctness: the new code must not decrease accuracy by more than 1-3 ULPs
even at edge points in the algorithm.</p></li>
<li><p>code bloat: both source code size and especially binary size of the compiled
wheel.</p></li>
<li><p>maintainability: how readable is the code</p></li>
<li><p>performance: benchmarks must show a significant performance boost</p></li>
</ul>
<section id="adding-a-new-intrinsic">
<span id="new-intrinsics"></span><h4>Adding a new intrinsic<a class="headerlink" href="#adding-a-new-intrinsic" title="Link to this heading">#</a></h4>
<p>If a contributor wants to use a platform-specific SIMD instruction that is not
yet supported as a universal intrinsic, then:</p>
<ol class="arabic simple">
<li><p>It should be added as a universal intrinsic for all platforms</p></li>
<li><p>If it does not have an equivalent instruction on other platforms (e.g.
<code class="docutils literal notranslate"><span class="pre">_mm512_mask_i32gather_ps</span></code> in <code class="docutils literal notranslate"><span class="pre">AVX512</span></code>), then no universal intrinsic
should be added and a platform-specific <code class="docutils literal notranslate"><span class="pre">ufunc</span></code> or a short helper function
should be written instead. If such a helper function is used, it must be
wrapped with the feature macros, and a reasonable non-intrinsic fallback to
be used by default.</p></li>
</ol>
<p>We expect (2) to be the exception. The contributor and maintainers should
consider whether that single-platform intrinsic is worth it compared to using
the best available universal intrinsic based implementation.</p>
</section>
</section>
<section id="reuse-by-other-projects">
<h3>Reuse by other projects<a class="headerlink" href="#reuse-by-other-projects" title="Link to this heading">#</a></h3>
<p>It would be nice if the universal intrinsics would be available to other
libraries like SciPy or Astropy that also build ufuncs, but that is not an
explicit goal of the first implementation of this NEP.</p>
</section>
</section>
<section id="backward-compatibility">
<h2>Backward compatibility<a class="headerlink" href="#backward-compatibility" title="Link to this heading">#</a></h2>
<p>There should be no impact on backwards compatibility.</p>
</section>
<section id="detailed-description">
<h2>Detailed description<a class="headerlink" href="#detailed-description" title="Link to this heading">#</a></h2>
<p>The CPU-specific are mapped to universal intrinsics which are
similar for all x86 SIMD variants, ARM SIMD variants etc. For example, the
NumPy universal intrinsic <code class="docutils literal notranslate"><span class="pre">npyv_load_u32</span></code> maps to:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">vld1q_u32</span></code> for ARM based NEON</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">_mm256_loadu_si256</span></code> for x86 based AVX2</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">_mm512_loadu_si512</span></code> for x86 based AVX-512</p></li>
</ul>
<p>Anyone writing a SIMD loop will use the <code class="docutils literal notranslate"><span class="pre">npyv_load_u32</span></code> macro instead of the
architecture specific intrinsic. The code also supplies guard macros for
compilation and runtime, so that the proper loops can be chosen.</p>
<p>Two new build options are available to <code class="docutils literal notranslate"><span class="pre">runtests.py</span></code> and <code class="docutils literal notranslate"><span class="pre">setup.py</span></code>:
<code class="docutils literal notranslate"><span class="pre">--cpu-baseline</span></code> and <code class="docutils literal notranslate"><span class="pre">--cpu-dispatch</span></code>.
The absolute minimum required features to compile are defined by
<code class="docutils literal notranslate"><span class="pre">--cpu-baseline</span></code>. For instance, on <code class="docutils literal notranslate"><span class="pre">x86_64</span></code> this defaults to <code class="docutils literal notranslate"><span class="pre">SSE3</span></code>. The
minimum features will be enabled if the compiler support it. The
set of additional intrinsics that can be detected and used as sets of
requirements to dispatch on are set by <code class="docutils literal notranslate"><span class="pre">--cpu-dispatch</span></code>. For instance, on
<code class="docutils literal notranslate"><span class="pre">x86_64</span></code> this defaults to <code class="docutils literal notranslate"><span class="pre">[SSSE3,</span> <span class="pre">SSE41,</span> <span class="pre">POPCNT,</span> <span class="pre">SSE42,</span> <span class="pre">AVX,</span> <span class="pre">F16C,</span> <span class="pre">XOP,</span>
<span class="pre">FMA4,</span> <span class="pre">FMA3,</span> <span class="pre">AVX2,</span> <span class="pre">AVX512F,</span> <span class="pre">AVX512CD,</span> <span class="pre">AVX512_KNL,</span> <span class="pre">AVX512_KNM,</span> <span class="pre">AVX512_SKX,</span>
<span class="pre">AVX512_CLX,</span> <span class="pre">AVX512_CNL,</span> <span class="pre">AVX512_ICL]</span></code>. These features are all mapped to a
c-level boolean array <code class="docutils literal notranslate"><span class="pre">npy__cpu_have</span></code>, and a c-level convenience function
<code class="docutils literal notranslate"><span class="pre">npy_cpu_have(int</span> <span class="pre">feature_id)</span></code> queries this array, and the results are stored
in <code class="docutils literal notranslate"><span class="pre">__cpu_features__</span></code> at runtime.</p>
<p>When importing the ufuncs, the available compiled loops’ required features are
matched to the ones discovered. The loop with the best match is marked to be
called by the ufunc.</p>
</section>
<section id="related-work">
<h2>Related work<a class="headerlink" href="#related-work" title="Link to this heading">#</a></h2>
<ul class="simple">
<li><p><a class="reference external" href="https://gitlab.freedesktop.org/pixman">Pixman</a> is the library used by Cairo and X to manipulate pixels. It uses
a technique like the one described here to fill a structure with function
pointers at runtime. These functions are similar to ufunc loops.</p></li>
<li><p><a class="reference external" href="http://eigen.tuxfamily.org/index.php?title=Main_Page">Eigen</a> is a C++ template library for linear algebra: matrices, vectors,
numerical solvers, and related algorithms. It is a higher level-abstraction
than the intrinsics discussed here.</p></li>
<li><p><a class="reference external" href="https://xsimd.readthedocs.io/en/latest/">xsimd</a> is a header-only C++ library for x86 and ARM that implements the
mathematical functions used in the algorithms of <code class="docutils literal notranslate"><span class="pre">boost.SIMD</span></code>.</p></li>
<li><p><a class="reference external" href="https://github.com/ermig1979/Simd">Simd</a> is a high-level image processing and machine learning library with
optimizations for different platforms.</p></li>
<li><p>OpenCV used to have the one-implementation-per-architecture design, but more
recently moved to a design that is quite similar to what is proposed in this
NEP. The top-level <a class="reference external" href="https://github.com/opencv/opencv/blob/4.1.2/modules/core/src/arithm.dispatch.cpp">dispatch code</a> includes a <a class="reference external" href="https://github.com/opencv/opencv/blob/4.1.2/modules/core/src/arithm.simd.hpp">generic header</a> that is
<a class="reference external" href="https://github.com/opencv/opencv/blob/4.1.2/modules/core/CMakeLists.txt#L3-#L13">specialized at compile time</a> by the CMakefile system.</p></li>
<li><p><a class="reference external" href="https://www.libvolk.org/doxygen/index.html">VOLK</a> is a GPL3 library used by gnuradio and others to abstract SIMD
intrinsics. They offer a set of high-level operations which have been
optimized for each architecture.</p></li>
<li><p>The C++ Standards Committee has proposed <a class="reference external" href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r8.pdf">class templates</a> for portable
SIMD programming via vector types, and <a class="reference external" href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4808.pdf">namespaces</a> for the templates.</p></li>
</ul>
</section>
<section id="implementation">
<h2>Implementation<a class="headerlink" href="#implementation" title="Link to this heading">#</a></h2>
<p>Current PRs:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/numpy/numpy/pull/13421">gh-13421 improve runtime detection of CPU features</a></p></li>
<li><p><a class="reference external" href="https://github.com/numpy/numpy/pull/13516">gh-13516: enable multi-platform SIMD compiler optimizations</a></p></li>
</ul>
<p>The compile-time and runtime code infrastructure are supplied by the first PR.
The second adds a demonstration of use of the infrastructure for a loop. Once
the NEP is approved, more work is needed to write loops using the mechanisms
provided by the NEP.</p>
</section>
<section id="alternatives">
<h2>Alternatives<a class="headerlink" href="#alternatives" title="Link to this heading">#</a></h2>
<p>A proposed alternative in <a class="reference external" href="https://github.com/numpy/numpy/pull/13516">gh-13516</a> is to implement loops for each CPU
architecture separately by hand, without trying to abstract common patterns in
the SIMD intrinsics (e.g., have <cite>loops.avx512.c.src</cite>, <cite>loops.avx2.c.src</cite>,
<cite>loops.sse.c.src</cite>, <cite>loops.vsx.c.src</cite>, <cite>loops.neon.c.src</cite>, etc.). This is more
similar to what PIXMAX does. There’s a lot of duplication here though, and the
manual code duplication requires a champion who will be dedicated to
implementing and maintaining that platform’s loop code.</p>
</section>
<section id="discussion">
<h2>Discussion<a class="headerlink" href="#discussion" title="Link to this heading">#</a></h2>
<p>Most of the discussion took place on the PR <a class="reference external" href="https://github.com/numpy/numpy/pull/15228">gh-15228</a> to accept this NEP.
Discussion on the mailing list mentioned <a class="reference external" href="https://www.libvolk.org/doxygen/index.html">VOLK</a> which was added to
the section on related work. The question of maintainability also was raised
both on the mailing list and in <a class="reference external" href="https://github.com/numpy/numpy/pull/15228">gh-15228</a> and resolved as follows:</p>
<ul class="simple">
<li><p>If contributors want to leverage a specific SIMD instruction, will they be
expected to add software implementation of this instruction for all other
architectures too? (see the <a class="reference internal" href="#new-intrinsics">new-intrinsics</a> part of the workflow).</p></li>
<li><p>On whom does the burden lie to verify the code and benchmarks for all
architectures? What happens if adding a universal ufunc in place of
architecture-specific code helps one architecture but harms performance
on another? (answered in the <a class="reference internal" href="#tradeoffs">tradeoffs</a> part of the workflow).</p></li>
</ul>
</section>
<section id="references-and-footnotes">
<h2>References and footnotes<a class="headerlink" href="#references-and-footnotes" title="Link to this heading">#</a></h2>
<aside class="footnote-list brackets">
<aside class="footnote brackets" id="id1" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">1</a><span class="fn-bracket">]</span></span>
<p>Each NEP must either be explicitly labeled as placed in the public domain (see
this NEP as an example) or licensed under the <a class="reference external" href="https://www.opencontent.org/openpub/">Open Publication License</a>.</p>
</aside>
</aside>
</section>
<section id="copyright">
<h2>Copyright<a class="headerlink" href="#copyright" title="Link to this heading">#</a></h2>
<p>This document has been placed in the public domain. <a class="footnote-reference brackets" href="#id1" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a></p>
</section>
</section>
</article>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#abstract">Abstract</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#motivation-and-scope">Motivation and scope</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#usage-and-impact">Usage and impact</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#binary-releases-wheels-on-pypi-and-conda-packages">Binary releases - wheels on PyPI and conda packages</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#source-builds">Source builds</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#how-to-run-benchmarks-to-assess-performance-benefits">How to run benchmarks to assess performance benefits</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#diagnostics">Diagnostics</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#workflow-for-adding-a-new-cpu-architecture-specific-optimization">Workflow for adding a new CPU architecture-specific optimization</a><ul class="nav section-nav flex-column">
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#adding-a-new-intrinsic">Adding a new intrinsic</a></li>
</ul>
</li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#reuse-by-other-projects">Reuse by other projects</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#backward-compatibility">Backward compatibility</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#detailed-description">Detailed description</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#related-work">Related work</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#implementation">Implementation</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#alternatives">Alternatives</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#discussion">Discussion</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#references-and-footnotes">References and footnotes</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#copyright">Copyright</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="_static/scripts/bootstrap.js?digest=26a4bc78f4c0ddb94549"></script>
<script defer src="_static/scripts/pydata-sphinx-theme.js?digest=26a4bc78f4c0ddb94549"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<p class="copyright">
© Copyright 2017-2024, NumPy Developers.
<br/>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.2.6.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item">
<p class="theme-version">
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.0.
</p></div>
</div>
</div>
</footer>
</body>
</html>