-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathebpflow_code.ebpf
585 lines (453 loc) · 16.7 KB
/
ebpflow_code.ebpf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
/*
*
* (C) 2018-22 - ntop.org
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/
struct udp_info {
struct taskInfo proc, father;
char container_id[CONTAINER_ID_LEN];
};
BPF_HASH(udpinfo, u16, struct udp_info);
static void fill_ifname(eBPFevent *ev, struct sock *sk);
/* ******************************************* */
static void update_socket_hash(struct pt_regs *ctx, struct sock *sk) {
u32 tid = (bpf_get_current_pid_tgid() >> 32) & 0xFFFFFFFF;
struct sock_stats s = { .sk = sk, .ts = bpf_ktime_get_ns() };
// stash the sock ptr for lookup on returns
currsock.update(&tid, &s);
};
/* ******************************************* */
int trace_connect_entry(struct pt_regs *ctx, struct sock *sk) {
update_socket_hash(ctx, sk);
// bpf_override_return(ctx, -ENOMEM);
return(0);
};
/* ******************************************* */
static void fill_father_task_info(struct taskInfo *task) {
// Parent basic info ----- //
struct task_struct *t = (struct task_struct *)bpf_get_current_task();
struct task_struct *parent;
struct cred *fcredential;
// Grabbing father pointer
// bpf_probe_read(&parent, sizeof(struct task_struct *), &t->real_parent);
parent = t->real_parent;
// Reading father credential
// bpf_probe_read(&fcredential, sizeof(struct cred *), &parent->real_cred);
fcredential = (struct cred *)(parent->real_cred);
task->pid = (u32)parent->pid;
task->uid = (u32)fcredential->uid.val;
task->gid = (u32)fcredential->gid.val;
if(task->pid == 0)
task->task[0] = '\0';
else
bpf_probe_read(&task->task, sizeof(task->task), parent->comm);
}
/* ******************************************* */
static void fill_container_id(char *container_id) {
struct task_struct *curr_task;
struct css_set *css;
struct cgroup_subsys_state *sbs;
struct cgroup *cg;
struct kernfs_node *knode, *pknode;
char *name;
int name_shift = 0;
// Initializing to root cgroup
memcpy(container_id, "/\0", 2);
curr_task = (struct task_struct *) bpf_get_current_task();
css = curr_task->cgroups;
bpf_probe_read(&sbs, sizeof(void *), &css->subsys[0]);
bpf_probe_read(&cg, sizeof(void *), &sbs->cgroup);
#if LINUX_VERSION_CODE <= KERNEL_VERSION(3,15,0)
bpf_probe_read(&name, sizeof(void *), &cg->name);
// Docker name cgroup as follows: "docker-<containerid>"
bpf_probe_read(container_id, CONTAINER_ID_LEN, name+sizeof(struct cgroup_name));
container_id[CONTAINER_ID_LEN-1] = '\0';
#else
// Reading fspath
bpf_probe_read(&knode, sizeof(void *), &cg->kn);
bpf_probe_read(&pknode, sizeof(void *), &knode->parent);
if(pknode != NULL) {
char *aus;
bpf_probe_read(&aus, sizeof(void *), &knode->name);
bpf_probe_read_str(container_id, CONTAINER_ID_LEN, aus);
}
#endif
}
/* ******************************************* */
static void fill_task_info(char *container_id, struct taskInfo *task, struct taskInfo *father) {
struct task_struct *curr_task = (struct task_struct *)bpf_get_current_task();
u64 tgid = bpf_get_current_pid_tgid();
u64 ugid = bpf_get_current_uid_gid();
u32 pid = tgid & 0xFFFFFFFF, tid = (tgid >> 32) & 0xFFFFFFFF;
u32 uid = ugid & 0xFFFFFFFF, gid = (ugid >> 32) & 0xFFFFFFFF;
task->pid = pid;
task->tid = tid;
task->uid = uid;
task->gid = gid;
if(pid == 0)
task->task[0] = '\0';
else {
bpf_get_current_comm(&task->task, sizeof(task->task));
fill_father_task_info(father);
}
container_id[0] = '\0';
fill_container_id(container_id);
}
/* ******************************************* */
static void swap_event_peers(eBPFevent *ev) {
if(ev->ip_version == 4) {
u32 tmp;
u16 tmp16;
tmp16 = ev->sport;
ev->sport = ev->dport;
ev->dport = tmp16;
tmp = ev->addr.v4.daddr;
ev->addr.v4.daddr = ev->addr.v4.saddr;
ev->addr.v4.saddr = tmp;
} else {
u16 tmp16;
unsigned __int128 tmp;
tmp16 = ev->sport;
ev->sport = ev->dport;
ev->dport = tmp16;
memcpy(&tmp, &ev->addr.v6.saddr, sizeof(tmp));
memcpy(&ev->addr.v6.saddr, &ev->addr.v6.daddr, sizeof(ev->addr.v6.saddr));
memcpy(&ev->addr.v6.daddr, &tmp, sizeof(ev->addr.v6.daddr));
}
}
/* ******************************************* */
static int fill_event(struct pt_regs *ctx, eBPFevent *ev,
struct sock *sk,
void *msg,
u64 begin_ts,
u8 proto, u8 swap_peers) {
u16 sport = 0, dport = 0;
u16 family;
u64 delta;
u32 pid = bpf_get_current_pid_tgid() & 0xFFFFFFFF;
u32 saddr = 0, daddr = 0;
ktime_t kt = { bpf_ktime_get_ns() };
ev->sent_packet = (swap_peers == 0) ? 1 : 0;
bpf_probe_read(&family, sizeof(family), &sk->__sk_common.skc_family);
if((family != AF_INET) && (family != AF_INET6)) return(-1);
bpf_probe_read(&sport, sizeof(u16), &sk->__sk_common.skc_num);
bpf_probe_read(&dport, sizeof(u16), &sk->__sk_common.skc_dport);
if(msg) {
struct sockaddr_in usin;
bpf_probe_read(&usin, sizeof(usin), msg);
family = usin.sin_family;
if(usin.sin_family == AF_INET) {
daddr = usin.sin_addr.s_addr;
dport = usin.sin_port;
}
}
if(begin_ts > 0) {
delta = bpf_ktime_get_ns() - begin_ts;
delta /= 1000;
} else
delta = 0;
dport = ntohs(dport); /* This has to be done all the time */
if((sport == 0) && (dport == 0))
return(-1);
ev->proc.pid = pid;
if(family == AF_INET) {
ev->ip_version = 4;
if(saddr == 0)
bpf_probe_read(&ev->addr.v4.saddr, sizeof(u32), &sk->__sk_common.skc_rcv_saddr);
else
ev->addr.v4.saddr = saddr;
if(daddr == 0)
bpf_probe_read(&ev->addr.v4.daddr, sizeof(u32), &sk->__sk_common.skc_daddr);
else
ev->addr.v4.daddr = daddr;
} else /* (family == AF_INET6) */ {
ev->ip_version = 6;
bpf_probe_read(&ev->addr.v6.saddr, sizeof(ev->addr.v6.saddr),
sk->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32);
bpf_probe_read(&ev->addr.v6.daddr, sizeof(ev->addr.v6.daddr), sk->__sk_common.skc_v6_daddr.in6_u.u6_addr32);
if(/* Implement in a better way */
(((ev->addr.v6.saddr) & 0xFFFFFFFF) == 0)
&& (((ev->addr.v6.saddr >> 32) & 0xFFFFFFFF) == 0)
) {
ev->ip_version = 4;
ev->proc.pid = pid;
ev->addr.v4.saddr = ev->addr.v6.saddr >> 96;
ev->sport = sport;
ev->addr.v4.daddr = ev->addr.v6.daddr >> 96;
}
}
ev->dport = dport;
ev->sport = sport;
ev->latency_usec = delta;
ev->proto = proto;
bpf_get_current_comm(&ev->proc.task, sizeof(ev->proc.task));
ev->proc.pid = pid;
fill_task_info((char*)ev->container_id, &ev->proc, &ev->father);
if(swap_peers) swap_event_peers(ev);
fill_ifname(ev, sk);
ev->ktime = kt;
return(0);
}
/* ******************************************* */
static int trace_connect_return(struct pt_regs *ctx) {
int ret = PT_REGS_RC(ctx); // return value
struct sock_stats *s;
u32 tid = (bpf_get_current_pid_tgid() >> 32) & 0xFFFFFFFF;
eBPFevent event = { .etype = eTCP_CONN, .ip_version = 4 };
s = currsock.lookup(&tid);
if(s == NULL)
return(0); // missed entry
fill_event(ctx, &event, s->sk, NULL, s->ts, IPPROTO_TCP, 0 /* don't swap */);
ebpf_events.perf_submit(ctx, &event, sizeof(eBPFevent));
currsock.delete(&tid);
return(0);
}
/* ******************************************* */
int trace_connect_v4_return(struct pt_regs *ctx) {
return trace_connect_return(ctx);
}
/* ******************************************* */
int trace_connect_v6_return(struct pt_regs *ctx) {
return trace_connect_return(ctx);
}
/* ******************************************* */
int trace_tcp_accept(struct pt_regs *ctx) {
struct sock *newsk = (struct sock *)PT_REGS_RC(ctx);
if(newsk != NULL) {
eBPFevent event = { .etype = eTCP_ACPT, .ip_version = 4 };
fill_event(ctx, &event, newsk, NULL, 0, IPPROTO_TCP, 1 /* swap */);
ebpf_events.perf_submit(ctx, &event, sizeof(eBPFevent));
}
return(0);
}
/* ******************************************* */
// Fired when the state changes and check if the state is CLOSE
int trace_tcp_set_state(struct pt_regs *ctx, struct sock *sk, int state) {
unsigned char old_state;
eBPFevent event = {};
if((state != TCP_CLOSE) && (state != EINPROGRESS))
return 0;
else {
// Reading old state
// bpf_probe_read(&old_state, sizeof(unsigned char), (unsigned char*) &sk->__sk_common.skc_state);
old_state = sk->__sk_common.skc_state;
}
fill_event(ctx, &event, sk, NULL, 0, IPPROTO_TCP, 0);
// Connection refused if we move from SYN_SENT to TCP_CLOSE
if (((int)old_state == TCP_SYN_SENT) && (state == TCP_CLOSE))
event.etype = eTCP_CONN_FAIL;
else
event.etype = eTCP_CLOSE;
ebpf_events.perf_submit(ctx, &event, sizeof(eBPFevent));
return 0;
}
/* ******************************************* */
int trace_tcp_retransmit_skb(struct pt_regs *ctx, struct sock *sk) {
u32 tid = (bpf_get_current_pid_tgid() >> 32) & 0xFFFFFFFF;
eBPFevent event = { .etype = eTCP_RETR, .retransmissions = 1 };
fill_event(ctx, &event, sk, NULL, 0, IPPROTO_TCP, 0);
ebpf_events.perf_submit(ctx, &event, sizeof(eBPFevent));
return 0;
}
/* *********************** UDP *************************** */
/* *********************** UDP *************************** */
/* *********************** UDP *************************** */
/* key is IPs+sport+dport, value = bpf_ktime_get_ns() */
#define BPF_LRU_HASH3(_name, _key_type, _leaf_type) BPF_TABLE("lru_hash", _key_type, _leaf_type, _name, 10240)
BPF_LRU_HASH3(udpmsglru, u64, u64);
/* ******************************************* */
static u8 is_cached_entry(eBPFevent *ev) {
u64 hash_idx;
u64 *when, now;
/* NOTE: implemented asymmetric hash to make sure we see both flow directions */
if(ev->ip_version == 4)
hash_idx = ev->addr.v4.saddr + ev->addr.v4.daddr + ev->sport + ev->dport + ev->proc.pid;
else
hash_idx = ev->addr.v6.saddr + ev->addr.v6.daddr + ev->sport + ev->dport + ev->proc.pid;
when = udpmsglru.lookup(&hash_idx);
now = bpf_ktime_get_ns();
if(when == NULL) {
/* not found so not cached */
udpmsglru.update(&hash_idx, &now);
return(0);
} else {
u64 diff = now - *when;
if(diff > 1000000000 /* 1 sec */) {
/* or it was cached more than one second ago */
udpmsglru.update(&hash_idx, &now);
return(0);
}
return(1);
}
return(0);
}
/* ******************************************* */
/* ******************************************* */
/* https://blog.yadutaf.fr/2017/07/28/tracing-a-packet-journey-using-linux-tracepoints-perf-ebpf/ */
#define ETHERTYPE_IP 0x0800 /* IP */
#define ETHERTYPE_IPV6 0x86DD /* IP protocol version 6 */
#define ETHERTYPE_VLAN 0x8100 /* IEEE 802.1Q VLAN tagging */
#define MAC_HEADER_SIZE 14;
#define member_address(source_struct, source_member) \
({ \
void* __ret; \
__ret = (void*) (((char*)source_struct) + offsetof(typeof(*source_struct), source_member)); \
__ret; \
})
#define member_read(destination, source_struct, source_member) \
do{ \
bpf_probe_read( \
destination, \
sizeof(source_struct->source_member), \
member_address(source_struct, source_member) \
); \
} while(0)
static inline int udp_packet_trace(void *ctx, struct sk_buff* skb, u_int8_t sent_packet) {
// Compute MAC header address
char* head;
u16 mac_header;
eBPFevent event = { .etype = eUDP_SEND, .sent_packet = sent_packet };
u8 offset, l4proto, ip_version;
char* ip_header_address;
struct udphdr *udphdr;
u16 eth_proto;
struct net_device *dev;
member_read(&head, skb, head);
member_read(&mac_header, skb, mac_header);
head = head + mac_header;
bpf_probe_read(ð_proto, sizeof(u16), &head[12]);
// Compute IP Header address
ip_header_address = head + MAC_HEADER_SIZE;
// Load IP protocol version
bpf_probe_read(&ip_version, sizeof(u8), ip_header_address);
event.ip_version = ip_version >> 4 & 0xf;
/* TODO; ADD VLAN support */
if(eth_proto == htons(ETHERTYPE_IP)) {
struct iphdr iphdr;
event.ip_version = 4;
bpf_probe_read(&iphdr, sizeof(iphdr), ip_header_address);
// Load protocol and address
offset = iphdr.ihl * 4;
l4proto = iphdr.protocol;
// Discard non UDP traffic
if(l4proto != IPPROTO_UDP) return 0;
event.addr.v4.saddr = iphdr.saddr;
event.addr.v4.daddr = iphdr.daddr;
udphdr = (struct udphdr*)(&ip_header_address[offset]);
bpf_probe_read(&event.sport, sizeof(u16), &udphdr->source);
bpf_probe_read(&event.dport, sizeof(u16), &udphdr->dest);
event.sport = htons(event.sport);
event.dport = htons(event.dport);
} else if(eth_proto == htons(ETHERTYPE_IPV6)) {
// Assume no option header --> fixed size header
struct ipv6hdr* ipv6hdr = (struct ipv6hdr*)ip_header_address;
event.ip_version = 6;
bpf_probe_read(&l4proto, sizeof(ipv6hdr->nexthdr),
(char*)ipv6hdr + offsetof(struct ipv6hdr, nexthdr));
// Discard non UDP traffic
if(l4proto != IPPROTO_UDP) return 0;
bpf_probe_read(&event.addr.v6.saddr, sizeof(ipv6hdr->saddr),
(char*)ipv6hdr + offsetof(struct ipv6hdr, saddr));
bpf_probe_read(&event.addr.v6.daddr, sizeof(ipv6hdr->daddr),
(char*)ipv6hdr + offsetof(struct ipv6hdr, daddr));
offset = sizeof(*ipv6hdr);
udphdr = (struct udphdr*)(&ip_header_address[offset]);
bpf_probe_read(&event.sport, sizeof(u16), &udphdr->source);
bpf_probe_read(&event.dport, sizeof(u16), &udphdr->dest);
event.sport = htons(event.sport);
event.dport = htons(event.dport);
} else {
#if 0
event.ip_version = 6;
event.sport = ntohs(eth_proto);
ebpf_events.perf_submit(ctx, &event, sizeof(eBPFevent));
#endif
return(0);
}
event.proto = IPPROTO_UDP;
event.latency_usec = 0;
if(sent_packet)
fill_task_info((char*)event.container_id, &event.proc, &event.father);
else {
event.container_id[0] = '\0';
memset(&event.proc, 0, sizeof(event.proc));
memset(&event.father, 0, sizeof(event.father));
}
member_read(&dev, skb, dev);
bpf_probe_read(&event.ifname, IFNAMSIZ, dev->name);
if(!is_cached_entry(&event))
ebpf_events.perf_submit(ctx, &event, sizeof(eBPFevent));
return 0;
}
/* ******************************************* */
static void fill_ifname(eBPFevent *ev, struct sock *sk) {
struct net_device *dev;
struct dst_entry *dst;
member_read(&dst, sk, sk_dst_cache);
member_read(&dev, dst, dev);
bpf_probe_read(&ev->ifname, IFNAMSIZ, dev->name);
}
/* ******************************************* */
/**
* Attach to Kernel Tracepoints
*/
/*
cat /sys/kernel/debug/tracing/events/net/netif_rx/format
field:unsigned short common_type;offset:0;size:2;signed:0;
field:unsigned char common_flags;offset:2;size:1;signed:0;
field:unsigned char common_preempt_count;offset:3;size:1;signed:0;
field:int common_pid;offset:4;size:4;signed:1;
field:void * skbaddr;offset:8;size:8;signed:0;
field:unsigned int len;offset:16;size:4;signed:0;
field:__data_loc char[] name;offset:20;size:4;signed:1;
*/
struct netif_rx_read_args {
u64 __unused__;
void * skbaddr;
u_int16_t len;
char name[];
};
/*
cat /sys/kernel/debug/tracing/events/syscalls/sys_enter_bind/format
field:int __syscall_nr;offset:8;size:4;signed:1;
field:int fd;offset:16;size:8;signed:0;
field:struct sockaddr * umyaddr;offset:24;size:8;signed:0;
field:int addrlen;offset:32;size:8;signed:0;
*/
struct sys_bind_args {
u64 __unused__;
int __syscall_nr;
int fd;
struct sockaddr *umyaddr;
int addrlen;
};
/*
* When a packet is received the skb has not yet hit the system and thus
* we don't know (yet) the process that will handle it
*/
int trace_netif_rx_entry(struct netif_rx_read_args *args) {
return udp_packet_trace(args, (struct sk_buff*)(args->skbaddr), 0);
}
int trace_netif_tx_entry(struct netif_rx_read_args *args) {
return udp_packet_trace(args, (struct sk_buff*)(args->skbaddr), 1);
}
int trace_receive_v4(struct pt_regs *ctx, struct sock *sk) {
eBPFevent event = { .etype = eUDP_RECV, .ip_version = 4 };
if(fill_event(ctx, &event, sk, NULL, bpf_ktime_get_ns(), IPPROTO_UDP, 0 /* don't swap */) == 0)
ebpf_events.perf_submit(ctx, &event, sizeof(eBPFevent));
return(0);
}