forked from Cambricon/mlu-ops
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_case.cpp
789 lines (727 loc) · 27.8 KB
/
gen_case.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/*************************************************************************
* Copyright (C) [2022] by Cambricon, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*************************************************************************/
#include "core/gen_case.h"
#include <sys/syscall.h>
#include <unistd.h>
#include <time.h>
#include <error.h>
#include <limits.h>
#include <algorithm>
#include <iterator>
#include <fstream>
#include <regex> // NOLINT
#include <mutex> // NOLINT
#include <unordered_map>
#include <utility>
#include "core/type.h"
#include "core/logging.h"
#include "core/platform/env_time.h"
namespace mluop {
namespace gen_case {
// false is for internal use
#define IS_DUMP_DATA (genCaseModeGet(false) == 2)
#define IS_ONLY_SHOW (genCaseModeGet(false) == 3)
// mode_stacks_ is used for eliminate internal prototxt in mluOp interface
__attribute__((__unused__)) std::unordered_map<std::string, std::vector<int>>
mode_stacks_;
// nodes_ is like mode_stacks, keep nodes_vector for each thread
__attribute__((__unused__)) std::unordered_map<std::string, std::vector<PbNode>>
nodes_;
// create directory and modify mode_stacks_ should be thread-safe
__attribute__((__unused__)) std::mutex stacks_mutex_;
// details of environment description can be found on Wiki
// Get MLUOP_GEN_CASE from env.
// MLUOP_GEN_CASE can be changed by genCaseModeSet
// MLUOP_GEN_CASE=1: Generate gen_case file without input data
// MLUOP_GEN_CASE=2: Generate gen_case file with input data
// MLUOP_GEN_CASE=3: Print gen_case simple infomation on screen
__attribute__((__unused__)) int gen_case_mode_ =
mluop::getUintEnvVar("MLUOP_GEN_CASE", 0);
// MLUOP_GEN_CASE_DIR control where the prototxt file is stored
// default value of MLUOP_GEN_CASE_DIR is curdir + '/gen_case'
__attribute__((__unused__)) std::string gen_case_dir_ =
mluop::getStringEnvVar("MLUOP_GEN_CASE_DIR");
// MLUOP_GEN_CASE_DUMP_INTERNAL control whether dump internal mluOpapi call
__attribute__((__unused__)) bool dump_internal_ =
mluop::getBoolEnvVar("MLUOP_GEN_CASE_DUMP_INTERNAL", false);
// MLUOP_GEN_CASE_OP_NAME control generating prototxt
// "conv;abs" means only generate prototxt for conv and abs
// "-conv;-abs" means only not generate prototxt for conv and abs
__attribute__((__unused__)) std::string op_name_ =
mluop::getStringEnvVar("MLUOP_GEN_CASE_OP_NAME", "all");
// MLUOP_GEN_CASE_DUMP_DATA control whether dump input device data in prototxt
// or not 0 : means not dump 1 : means dump readable value, is default value 2 :
// means dump hex value
__attribute__((__unused__)) int dump_data_ =
mluop::getUintEnvVar("MLUOP_GEN_CASE_DUMP_DATA", 0);
// MLUOP_GEN_CASE_DUMP_DATA_OUTPUT control whether dump output device data in
// prototxt or not 0 : means not dump, is default value 1 : means dump readable
// value 2 : means dump hex value
__attribute__((__unused__)) int dump_data_output_ =
mluop::getUintEnvVar("MLUOP_GEN_CASE_DUMP_DATA_OUTPUT", 0);
// MLUOP_GEN_CASE_DUMP_DATA_FILE control whether dump data file separately
// 0 : means not dump file
// 1 : means dump file
__attribute__((__unused__)) int dump_data_file_ =
mluop::getUintEnvVar("MLUOP_GEN_CASE_DUMP_DATA_FILE", 0);
bool isGenCaseOn() { return gen_case_mode_ > 0; }
int genCaseModeGet(bool first) {
if (gen_case_mode_ > 0) {
// genCaseModeGet(false) just return gen_case_mode_ for IS_DUMP_DATA
if (!first) {
return gen_case_mode_;
}
std::lock_guard<std::mutex> guard(stacks_mutex_);
std::string tid(std::to_string(syscall(SYS_gettid)));
int mode = dump_internal_ ? gen_case_mode_ : 0;
auto it = mode_stacks_.find(tid);
if (it != mode_stacks_.end()) {
auto &mode_stack = it->second;
// the top of mode_stack store the gen_case mode for current thread
// TODO(None): redundant first truth check
if (first) {
mode_stack.push_back(mode_stack.front());
mode_stack.front() = mode;
}
// during current mluOpapi, gen_case mode is on the bottom
return mode_stack.back();
} else {
std::vector<int> mode_stack(1, gen_case_mode_);
mode_stack.push_back(mode_stack.front());
mode_stack.front() = mode;
mode_stacks_.emplace(tid, mode_stack);
return gen_case_mode_;
}
} else {
return 0;
}
}
void genCaseModeRestore() {
if (gen_case_mode_ > 0) {
std::lock_guard<std::mutex> guard(stacks_mutex_);
std::string tid(std::to_string(syscall(SYS_gettid)));
auto it = mode_stacks_.find(tid);
if (it != mode_stacks_.end()) {
auto &mode_stack = it->second;
// use gen_case mode of current mluOpapi to restore current thread
mode_stack.front() = mode_stack.back();
mode_stack.pop_back();
} else {
LOG(WARNING) << "[gen_case] GEN_CASE_END not matched, please check.";
}
}
}
// should update mode in mode_stacks_
void genCaseModeSet(int mode) {
if (mode < 0 && mode > 4) {
mode = 0;
}
std::lock_guard<std::mutex> guard(stacks_mutex_);
for (auto &mode_stacks_it : mode_stacks_) {
auto &mode_stack = mode_stacks_it.second;
for (int i = 0; i < mode_stack.size(); i++) {
mode_stack[i] = mode;
}
}
gen_case_mode_ = mode;
LOG(INFO) << "[gen_case] Set GEN_CASE mode to " << mode << ".";
}
// TO DO: can use regex and global variable for efficiency
inline int getOpNameMask(const std::string op_name_,
const std::string op_name) {
if (op_name_ == "all") {
return 1;
}
std::unordered_map<std::string, int> op_name_mask;
std::vector<std::string> splits;
std::string op_name_origin = op_name_;
size_t pos = 0;
std::string delimiter = ";";
std::string token;
while ((pos = op_name_origin.find(delimiter)) != std::string::npos) {
token = op_name_origin.substr(0, pos);
splits.push_back(token);
op_name_origin.erase(0, pos + delimiter.length());
}
if (op_name_origin.length() != 0) {
splits.push_back(op_name_origin);
}
int specify_op = 0;
for (auto &name : splits) {
if (name[0] == '-') {
specify_op = 1;
op_name_mask.emplace(name.substr(1, name.size() - 1), -1);
} else if (name[0] == '+') {
specify_op = 1;
op_name_mask.emplace(name.substr(1, name.size() - 1), 2);
} else {
op_name_mask.emplace(name, 1);
}
}
if (op_name_mask.find(op_name) != op_name_mask.end()) {
return op_name_mask[op_name];
} else {
return specify_op;
}
}
PbNode *genCaseStart(std::string op_name, std::string op_type) {
std::lock_guard<std::mutex> guard(stacks_mutex_);
std::string tid(std::to_string(syscall(SYS_gettid)));
auto it = nodes_.find(tid);
if (it != nodes_.end()) {
auto &nodes_vector = it->second;
// find empty slot of node
for (int i = 0; i < nodes_vector.size(); i++) {
// so after serialization, node should be reset
if (nodes_vector[i].op_name == "") {
nodes_vector[i].setOpNameAndType(op_name, op_type);
return &nodes_vector[i];
}
}
// if there is no empty node, should new PbNode
nodes_vector.push_back(PbNode());
nodes_vector.back().setOpNameAndType(op_name, op_type);
return &nodes_vector.back();
} else {
// first call in this thread, just set a vector of PbNode
nodes_.emplace(tid, std::vector<PbNode>(1));
PbNode &node = nodes_[tid].front();
node.setOpNameAndType(op_name, op_type);
return &node;
}
}
void genCaseData(PbNode *node, bool is_input, std::string id,
const void *device_data, mluOpTensorDescriptor_t desc,
double param1, double param2, std::string distribution,
bool dump_data) {
std::vector<double> params{param1, param2};
if (desc == nullptr) {
mluOpTensorDescriptor_t desc_;
mluOpCreateTensorDescriptor(&desc_);
std::vector<int64_t> dims{1};
mluOpSetTensorDescriptor_v2(desc_, MLUOP_LAYOUT_ARRAY, MLUOP_DTYPE_FLOAT, 1,
dims.data());
node->appendTensor(is_input, id, device_data, desc_, true, params,
distribution, dump_data);
} else {
node->appendTensor(is_input, id, device_data, desc, false, params,
distribution, dump_data);
}
}
void genCaseData(PbNode *node, bool is_input, std::string id,
const void *device_data, mluOpSeqDataDescriptor_t seq_desc,
double param1, double param2, bool have_onchip,
std::string distribution, bool dump_data) {
mluOpTensorDescriptor_t desc;
mluOpCreateTensorDescriptor(&desc);
mluOpDataType_t dtype;
int64_t dims[MLUOP_DIM_MAX];
int dim;
mluOpGetSeqDataDescriptor_v2(seq_desc, nullptr, &dtype, &dim, dims, nullptr,
nullptr, nullptr);
mluOpSetTensorDescriptor_v2(desc, MLUOP_LAYOUT_ARRAY, dtype, dim, dims);
std::vector<double> params{param1, param2};
node->appendTensor(is_input, id, device_data, desc, true, params,
distribution, dump_data);
}
void genCaseData(PbNode *node, bool is_input, std::string id,
const void *device_data, int dim, int64_t *dims,
mluOpDataType_t dtype, mluOpTensorLayout_t layout,
double param1, double param2, std::string distribution,
bool dump_data) {
mluOpTensorDescriptor_t desc;
mluOpCreateTensorDescriptor(&desc);
mluOpSetTensorDescriptor_v2(desc, layout, dtype, dim, dims);
std::vector<double> params{param1, param2};
node->appendTensor(is_input, id, device_data, desc, true, params,
distribution, dump_data);
}
void genCaseData(PbNode *node, bool is_input, std::string id,
const void *device_data, int dim, const int64_t *dims,
mluOpDataType_t dtype, mluOpTensorLayout_t layout,
double param1, double param2, std::string distribution,
bool dump_data) {
mluOpTensorDescriptor_t desc;
mluOpCreateTensorDescriptor(&desc);
mluOpSetTensorDescriptor_v2(desc, layout, dtype, dim, dims);
std::vector<double> params{param1, param2};
node->appendTensor(is_input, id, device_data, desc, true, params,
distribution, dump_data);
}
void genCaseData(PbNode *node, bool is_input, std::string id,
const void *device_data, int dim, std::vector<int64_t> dims,
mluOpDataType_t dtype, mluOpTensorLayout_t layout,
double param1, double param2, std::string distribution,
bool dump_data) {
mluOpTensorDescriptor_t desc;
mluOpCreateTensorDescriptor(&desc);
mluOpSetTensorDescriptor_v2(desc, layout, dtype, dim, dims.data());
std::vector<double> params{param1, param2};
node->appendTensor(is_input, id, device_data, desc, true, params,
distribution, dump_data);
}
void genCaseTestParam(PbNode *node, bool is_diff1, bool is_diff2, bool is_diff3,
const float diff1_threshold, const float diff2_threshold,
const float diff3_threshold,
const float diff1_threshold_imag,
const float diff2_threshold_imag,
const float diff3_threshold_imag) {
if (is_diff1) {
node->appendCriterion("DIFF1", diff1_threshold, diff1_threshold_imag);
}
if (is_diff2) {
node->appendCriterion("DIFF2", diff2_threshold, diff2_threshold_imag);
}
if (is_diff3) {
node->appendCriterion("DIFF3", diff3_threshold, diff3_threshold_imag);
}
}
void genCaseHandle(PbNode *node, mluOpHandle_t handle) {
node->setHandle(handle);
node->getHandleParam();
}
void genCaseHandleParam(PbNode *node) {
if (node->handle_param.params.empty()) {
LOG(ERROR)
<< "[gen_case] HandleParam generation failed, please set handle first!";
} else {
node->handle_param.name = "handle_param";
}
}
void genCaseEnd() {
// serialize protxt and restore gen case mode
if (gen_case_mode_ > 0) {
std::string tid(std::to_string(syscall(SYS_gettid)));
auto it = mode_stacks_.find(tid);
auto &mode_stack = it->second;
if (mode_stack.back() > 0) {
auto nodes_it = nodes_.find(tid);
auto &nodes_vector = nodes_it->second;
// find the last used slot
int slot_num = 0;
for (int i = 0; i < nodes_vector.size(); i++) {
if (nodes_vector[i].op_name != "") {
slot_num++;
}
}
if (dump_data_output_ != 0) {
nodes_vector[slot_num - 1].dumpOutputFile();
}
nodes_vector[slot_num - 1].reset();
}
}
genCaseModeRestore();
}
void PbNode::setOpNameAndType(std::string op_name, std::string op_type) {
this->op_name = op_name;
this->op_type = op_type;
this->file_name = "";
this->case_file_name = "";
}
void PbNode::appendTensor(bool is_input, std::string id,
const void *device_data, mluOpTensorDescriptor_t desc,
bool inner_desc, std::vector<double> params,
std::string distribution, bool dump_data) {
this->tensors.push_back(TensorNode(is_input, id, device_data, desc,
inner_desc, params, distribution,
dump_data));
}
void PbNode::appendCriterion(std::string criterion, double threshold,
double threshold_imag) {
this->criterions.push_back(criterion);
this->thresholds.push_back(threshold);
this->thresholds_imag.push_back(threshold_imag);
}
void PbNode::getHandleParam() {
std::string round_mode_str = "";
mluOpQuantizeRoundMode_t round_mode_enum;
mluOpGetQuantizeRoundMode(this->handle, &round_mode_enum);
switch (round_mode_enum) {
case 0:
round_mode_str = "ROUND_TO_EVEN";
break;
case 1:
round_mode_str = "ROUND_HALF_UP";
break;
case 2:
round_mode_str = "ROUND_OFF_ZERO";
break;
default:
LOG(ERROR) << "[gen_case]: unsupportted round mode: " << round_mode_enum;
}
this->handle_param.params.push_back({"round_mode", round_mode_str});
}
std::string PbNode::getFileName() {
// Get current time for file name.
static platform::EnvTime *env_time = platform::EnvTime::Default();
uint64_t now_micros = env_time->NowMicros();
int32_t micros_remainder = static_cast<int32_t>(now_micros % 1000000);
time_t current_time = time(NULL);
char char_current_time[64];
strftime(char_current_time, sizeof(char_current_time), "%Y%m%d_%H_%M_%S_",
localtime(¤t_time));
std::string string_current_time = char_current_time;
std::string string_micros_remainder = std::to_string(micros_remainder);
while (string_micros_remainder.size() < 6) {
string_micros_remainder = "0" + string_micros_remainder;
}
// Get current device index.
int dev_index = -1;
cnrtGetDevice(&dev_index);
// Create file name by op_name and current time.
std::string file_name = op_name + "_" + string_current_time +
string_micros_remainder + "_tid" +
std::to_string(syscall(SYS_gettid)) + "_device" +
std::to_string(dev_index);
return file_name;
}
std::string PbNode::getFolderName() {
// Create folder name by op_name.
std::string folder_name = "";
if (gen_case_dir_ != "") {
folder_name = gen_case_dir_;
} else {
char current_dir[PATH_MAX];
if (getcwd(current_dir, sizeof(current_dir)) == NULL) {
LOG(ERROR) << "[gen_case]: get current directory failed! (" << errno
<< ": " << strerror(errno) << ")";
return "NULL";
}
folder_name = current_dir;
}
folder_name = folder_name + "/gen_case/" + op_name;
return folder_name;
}
int PbNode::mkdir() {
std::string folder_name = getFolderName();
std::lock_guard<std::mutex> guard(stacks_mutex_);
int error_number = mkdirRecursive(folder_name.c_str());
return error_number;
}
void PbNode::serialize() {
int state = getOpNameMask(op_name_, op_name);
if (state != -1) {
if (state == 1) {
if (IS_ONLY_SHOW) {
printOnScreen();
} else {
dumpToFile(false);
}
} else if (state == 2) {
dumpToFile(true);
}
debugTensorAddress();
}
}
void PbNode::printOnScreen() {
std::stringstream print_info;
print_info << "[gen_case] [tid " << std::to_string(syscall(SYS_gettid))
<< "] Show ";
print_info << "[" << op_name << "] ";
for (int i = 0; i < tensors.size(); i++) {
if (tensors[i].is_input) {
print_info << "input { id: " << tensors[i].id << " ";
} else {
print_info << "output { id: " << tensors[i].id << " ";
}
print_info << descToString(tensors[i].desc, ' ') << " }";
}
LOG(INFO) << print_info.str() << "\n";
}
void PbNode::dumpDataFile(std::string file_name, std::string folder_name,
int index, std::ofstream &case_file,
enum DATASTATE data_state) {
cnrtQueue_t queue;
mluOpGetQueue(handle, &queue);
if (cnrtSuccess != cnrtQueueSync(queue)) {
LOG(ERROR) << "[gen_case] syncQueue failed";
}
uint64_t total_num = getTensorSize(index);
mluOpDataType_t dtype;
mluOpGetTensorDescriptor(tensors[index].desc, nullptr, &dtype, nullptr,
nullptr);
void *data = getDeviceData(index);
std::string dataState = data_state == INPUT ? "input" : "output";
std::string tensor_file_suffix =
file_name + "_data" + std::to_string(index) + "_" + dataState;
if (data != nullptr) {
if (data_state == OUTPUT) {
case_file << " path: \"" << tensor_file_suffix << "\"\n";
} else {
if (dump_data_file_ == 1) {
std::string tensor_file_name = folder_name + "/" + tensor_file_suffix;
case_file << " path: \"" << tensor_file_suffix << "\"\n";
std::ofstream tensor_file;
tensor_file.open(tensor_file_name.c_str(), std::ios::binary);
tensor_file.write(reinterpret_cast<const char *>(data),
total_num * mluop::getSizeOfDataType(dtype));
tensor_file.close();
} else {
total_num *= dtypeRatio(dtype);
for (uint64_t j = 0; j < total_num; ++j) {
if (dataState == "input" && dump_data_ == 2 && dtypeFloat(dtype)) {
case_file << " value_h: " << get_data_hex_string(dtype, data, j)
<< "\n";
} else {
case_file << get_dtype_value_string(dtype)
<< get_data_string(dtype, data, j) << "\n";
}
}
}
}
// free resources to avoid memeory leak
free(data);
} else {
case_file << get_tensor_random_string(index);
}
}
void PbNode::debugTensorAddress() {
if (VLOG_IS_ON(1)) {
std::ostringstream fmt_oss;
fmt_oss << "[gen_case_debug_address] ";
fmt_oss << "[file_name: " << this->file_name << "]"
<< " ";
for (const auto &tensor : tensors) {
fmt_oss << tensor.id << ": " << tensor.device_ptr << ", ";
}
LOG(INFO) << fmt_oss.str();
}
}
// when to get here?
// 1. gen_case_end when dump_data > 0
void PbNode::dumpOutputFile() {
int st = getOpNameMask(op_name_, op_name);
// st <=0 means gen_case do not work on this op_name
if (st <= 0) return;
for (int i = 0; i < tensors.size(); i++) {
if (!tensors[i].is_input) {
// sync queue to dump output if necessary
if (dump_data_output_) {
cnrtQueue_t queue;
mluOpGetQueue(handle, &queue);
if (cnrtSuccess != cnrtQueueSync(queue)) {
LOG(ERROR) << "[gen_case] syncQueue failed!";
} else {
// TO DO : should consider malloc failure
std::string folder_name = getFolderName();
std::string file_name = this->file_name;
uint64_t total_num = getTensorSize(i);
mluOpDataType_t dtype;
mluOpGetTensorDescriptor(tensors[i].desc, nullptr, &dtype, nullptr,
nullptr);
void *data = getDeviceData(i);
std::string dataState = "output";
if (data != nullptr) {
std::string tensor_file_suffix =
file_name + "_data" + std::to_string(i) + "_" + dataState;
std::string tensor_file_name =
folder_name + "/" + tensor_file_suffix;
std::ofstream tensor_file;
tensor_file.open(tensor_file_name.c_str(), std::ios::binary);
tensor_file.write(reinterpret_cast<const char *>(data),
total_num * mluop::getSizeOfDataType(dtype));
tensor_file.close();
}
}
}
}
}
}
void PbNode::dumpToFile(bool valueDump) {
std::string folder_name = getFolderName();
int error_number = mkdir();
// use lock to ensure mkdir not conflict
if (error_number != 0 && error_number != 17) {
LOG(ERROR) << "[gen_case]: mkdir folder failed for " << folder_name
<< " ! (" << errno << ": " << strerror(errno) << ")";
return;
}
std::string file_name = "";
std::string case_file_name = "";
if (this->file_name == "") {
file_name = getFileName();
case_file_name = folder_name + "/" + file_name + ".prototxt";
this->file_name = file_name;
this->case_file_name = case_file_name;
LOG(INFO) << "[gen_case] Generate " + case_file_name;
} else {
file_name = this->file_name;
case_file_name = this->case_file_name;
}
std::ofstream case_file;
if (!case_file.is_open()) {
case_file.open(case_file_name.c_str(), std::ios::ate | std::ios::out);
if (case_file) {
case_file << "op_name: \"" + op_name + "\"\n";
case_file << "op_type: " + op_type << "\n";
for (int i = 0; i < tensors.size(); i++) {
if (tensors[i].is_input) {
case_file << "input {\n id: \"" << tensors[i].id << "\"\n";
} else {
case_file << "output {\n id: \"" << tensors[i].id << "\"\n";
}
case_file << descToString(tensors[i].desc, '\n');
if (tensors[i].is_input) {
// TO DO : can be more elegant
if (valueDump || IS_DUMP_DATA) {
if ((tensors[i].dump_data || dump_data_ > 0) &&
tensors[i].device_ptr != nullptr) {
// TO DO : should consider malloc failure
dumpDataFile(file_name, folder_name, i, case_file, INPUT);
} else {
case_file << get_tensor_random_string(i);
}
} else {
case_file << get_tensor_random_string(i);
}
} else {
if (dump_data_output_ != 0) {
dumpDataFile(file_name, folder_name, i, case_file, OUTPUT);
}
}
case_file << "}\n";
}
// TO DO : can support child of child
if (op_param.name != "") {
case_file << op_param.name << " {\n";
for (int i = 0; i < op_param.params.size(); i++) {
case_file << " " << op_param.params[i].first << ": "
<< op_param.params[i].second << "\n";
}
for (int i = 0; i < op_param.childs.size(); i++) {
case_file << " " << op_param.childs[i].name << " {\n";
for (int j = 0; j < op_param.childs[i].params.size(); j++) {
case_file << " " << op_param.childs[i].params[j].first << ": "
<< op_param.childs[i].params[j].second << "\n";
}
case_file << " }\n";
}
case_file << "}\n";
}
if (handle_param.name != "") {
case_file << handle_param.name << " {\n";
for (int i = 0; i < handle_param.params.size(); i++) {
case_file << " " << handle_param.params[i].first << ": "
<< handle_param.params[i].second << "\n";
}
case_file << "}\n";
}
case_file << "test_param {\n";
for (int i = 0; i < criterions.size(); i++) {
case_file << " error_func: " << criterions[i] << "\n";
}
for (int i = 0; i < criterions.size(); i++) {
case_file << " error_threshold: " << thresholds[i] << "\n";
if (thresholds_imag[i] >= 0) {
case_file << " error_threshold_imag: " << thresholds_imag[i] << "\n";
}
}
case_file << " baseline_device: CPU\n}";
}
case_file.close();
}
}
// Check if tensor need stride process.
// should be same with tensor_stride_process_host.mlu
bool ifNeedTensorStrideProcess(const mluOpTensorDescriptor_t desc) {
bool needStrideProcess = false;
int tensor_dim;
mluOpTensorLayout_t layout;
mluOpDataType_t dtype;
mluOpGetTensorDescriptor_v2(desc, &layout, &dtype, &tensor_dim, nullptr);
int64_t *dims = new int64_t[tensor_dim];
int64_t *strides = new int64_t[tensor_dim];
mluOpGetTensorDescriptorEx_v2(desc, &layout, &dtype, &tensor_dim, dims,
strides);
int stride_base = 1;
for (int i = tensor_dim - 1; i >= 0; i--) {
if (dims[i] != 1) {
if (strides[i] == stride_base) {
stride_base *= dims[i];
} else {
needStrideProcess = true;
break;
}
}
}
delete[] dims;
delete[] strides;
return needStrideProcess;
}
std::string descToString(mluOpTensorDescriptor_t desc, char delimiter) {
int dim;
mluOpTensorLayout_t layout;
mluOpDataType_t dtype;
mluOpGetTensorDescriptor_v2(desc, &layout, &dtype, &dim, nullptr);
int64_t *dims = new int64_t[dim];
int64_t *strides = new int64_t[dim];
mluOpGetTensorDescriptorEx_v2(desc, &layout, &dtype, &dim, dims, strides);
mluOpDataType_t onchip_dtype;
mluOpGetTensorDescriptorOnchipDataType(desc, &onchip_dtype);
int position, offset;
float scale;
mluOpGetTensorDescriptorPositionScaleAndOffset(desc, &position, &scale,
&offset);
size_t total_element_num = mluOpGetTensorElementNum(desc);
std::stringstream tensor_info;
tensor_info << " shape: {" << delimiter;
for (int i = 0; i < dim; i++) {
tensor_info << " dims: " << dims[i] << delimiter;
}
if (total_element_num != 1) {
if (mluop::gen_case::ifNeedTensorStrideProcess(desc)) {
// Write the dim_stride of shape module.
for (int i = 0; i < dim; i++) {
tensor_info << " dim_stride: " << strides[i] << delimiter;
}
}
}
tensor_info << " }" << delimiter;
tensor_info << " layout: " << mluop::getNameOfTensorLayout(layout)
<< delimiter;
tensor_info << " dtype: " << mluop::getNameOfDataType(dtype) << delimiter;
if (desc->getPointerMode() == MLUOP_POINTER_MODE_HOST) {
tensor_info << " pointer_mode: POINTER_MODE_HOST" << delimiter;
if ((total_element_num != 1) || (dim != 0)) {
LOG(WARNING) << "[gen_case] Tensor has been set to POINTER_MODE_HOST, "
"but it is not a scalar";
} else {
tensor_info << " is_cpu_scalar: 1" << delimiter;
}
}
if (onchip_dtype != MLUOP_DTYPE_INVALID) {
tensor_info << " onchip_dtype: " << mluop::getNameOfDataType(onchip_dtype)
<< delimiter;
}
tensor_info << " position: " << position << delimiter;
tensor_info << " scale: " << scale << delimiter;
tensor_info << " offset: " << offset << delimiter;
delete[] dims;
delete[] strides;
return tensor_info.str();
}
} // namespace gen_case
} // namespace mluop
void MLUOP_WIN_API mluOpSetGenCaseMode(int mode) {
mluop::gen_case::genCaseModeSet(mode);
}