-
Notifications
You must be signed in to change notification settings - Fork 18
/
misc.py
83 lines (73 loc) · 2.07 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch.nn as nn
def mlp(
input_dim,
hidden_dim,
output_dim,
hidden_depth,
output_mod=None,
batchnorm=False,
activation=nn.ReLU,
):
if hidden_depth == 0:
mods = [nn.Linear(input_dim, output_dim)]
else:
mods = (
[nn.Linear(input_dim, hidden_dim), activation(inplace=True)]
if not batchnorm
else [
nn.Linear(input_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
activation(inplace=True),
]
)
for _ in range(hidden_depth - 1):
mods += (
[nn.Linear(hidden_dim, hidden_dim), activation(inplace=True)]
if not batchnorm
else [
nn.Linear(hidden_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
activation(inplace=True),
]
)
mods.append(nn.Linear(hidden_dim, output_dim))
if output_mod is not None:
mods.append(output_mod)
trunk = nn.Sequential(*mods)
return trunk
def weight_init(m):
"""Custom weight init for Conv2D and Linear layers."""
if isinstance(m, nn.Linear):
nn.init.orthogonal_(m.weight.data)
if hasattr(m.bias, "data"):
m.bias.data.fill_(0.0)
class MLP(nn.Module):
def __init__(
self,
input_dim,
hidden_dim,
output_dim,
hidden_depth,
output_mod=None,
batchnorm=False,
activation=nn.ReLU,
):
super().__init__()
self.trunk = mlp(
input_dim,
hidden_dim,
output_dim,
hidden_depth,
output_mod,
batchnorm=batchnorm,
activation=activation,
)
self.apply(weight_init)
def forward(self, x):
return self.trunk(x)
class ImplicitDataparallel(nn.DataParallel):
def compute_loss(self, *args, **kwargs):
return self.module.compute_loss(*args, **kwargs)
@property
def temperature(self):
return self.module.temperature