-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain.py
768 lines (664 loc) · 32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import gc
import random
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim, l2_loss, compute_depth
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams, ModelHiddenParams
from torch.utils.data import DataLoader
from utils.timer import Timer
# import lpips
from utils.scene_utils import render_training_image
from time import time
import copy
import numpy as np
import time
import json
from utils.video_utils import render_pixels, save_videos
from utils.visualization_tools import compute_optical_flow_and_save
from scene.gaussian_model import merge_models
to8b = lambda x : (255*np.clip(x.cpu().numpy(),0,1)).astype(np.uint8)
# try:
# from torch.utils.tensorboard import SummaryWriter
# TENSORBOARD_FOUND = True
# except ImportError:
TENSORBOARD_FOUND = False
current_time = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
render_keys = [
"gt_rgbs",
"rgbs",
"depths",
"dynamic_rgbs",
"static_rgbs",
# "forward_flows",
# "backward_flows",
]
@torch.no_grad()
def do_evaluation(
viewpoint_stack_full,
viewpoint_stack_test,
viewpoint_stack_train,
gaussians,
bg,
pipe,
eval_dir,
render_full,
step: int = 0,
args = None,
):
if len(viewpoint_stack_test) != 0:
print("Evaluating Test Set Pixels...")
render_results = render_pixels(
viewpoint_stack_test,
gaussians,
bg,
pipe,
compute_metrics=True,
return_decomposition=True,
debug=args.debug_test
)
eval_dict = {}
for k, v in render_results.items():
if k in [
"psnr",
"ssim",
"lpips",
# "feat_psnr",
"masked_psnr",
"masked_ssim",
# "masked_feat_psnr",
]:
eval_dict[f"pixel_metrics/test/{k}"] = v
os.makedirs(f"{eval_dir}/metrics", exist_ok=True)
os.makedirs(f"{eval_dir}/test_videos", exist_ok=True)
test_metrics_file = f"{eval_dir}/metrics/{step}_images_test_{current_time}.json"
with open(test_metrics_file, "w") as f:
json.dump(eval_dict, f)
print(f"Image evaluation metrics saved to {test_metrics_file}")
video_output_pth = f"{eval_dir}/test_videos/{step}.mp4"
vis_frame_dict = save_videos(
render_results,
video_output_pth,
num_timestamps=int(len(viewpoint_stack_test)//3),
keys=render_keys,
num_cams=3,
save_seperate_video=True,
fps=24,
verbose=True,
)
del render_results, vis_frame_dict
torch.cuda.empty_cache()
if len(viewpoint_stack_train) != 0 and len(viewpoint_stack_test) != 0:
print("Evaluating train Set Pixels...")
render_results = render_pixels(
viewpoint_stack_train,
gaussians,
bg,
pipe,
compute_metrics=True,
return_decomposition=False,
debug=args.debug_test
)
eval_dict = {}
for k, v in render_results.items():
if k in [
"psnr",
"ssim",
"lpips",
# "feat_psnr",
"masked_psnr",
"masked_ssim",
# "masked_feat_psnr",
]:
eval_dict[f"pixel_metrics/train/{k}"] = v
os.makedirs(f"{eval_dir}/metrics", exist_ok=True)
os.makedirs(f"{eval_dir}/train_videos", exist_ok=True)
train_metrics_file = f"{eval_dir}/metrics/{step}_images_train.json"
with open(train_metrics_file, "w") as f:
json.dump(eval_dict, f)
print(f"Image evaluation metrics saved to {train_metrics_file}")
video_output_pth = f"{eval_dir}/train_videos/{step}.mp4"
vis_frame_dict = save_videos(
render_results,
video_output_pth,
num_timestamps=int(len(viewpoint_stack_train)//3),
keys=render_keys,
num_cams=3,
save_seperate_video=True,
fps=24,
verbose=True,
)
del render_results
torch.cuda.empty_cache()
if render_full:
print("Evaluating Full Set...")
render_results = render_pixels(
viewpoint_stack_full,
gaussians,
bg,
pipe,
compute_metrics=True,
return_decomposition=True,
debug=args.debug_test
)
eval_dict = {}
for k, v in render_results.items():
if k in [
"psnr",
"ssim",
"lpips",
# "feat_psnr",
"masked_psnr",
"masked_ssim",
# "masked_feat_psnr",
]:
eval_dict[f"pixel_metrics/full/{k}"] = v
os.makedirs(f"{eval_dir}/metrics", exist_ok=True)
os.makedirs(f"{eval_dir}/full_videos", exist_ok=True)
test_metrics_file = f"{eval_dir}/metrics/{step}_images_full_{current_time}.json"
with open(test_metrics_file, "w") as f:
json.dump(eval_dict, f)
print(f"Image evaluation metrics saved to {test_metrics_file}")
# if render_video_postfix is None:
video_output_pth = f"{eval_dir}/full_videos/{step}.mp4"
vis_frame_dict = save_videos(
render_results,
video_output_pth,
num_timestamps=int(len(viewpoint_stack_full)//3),
keys=render_keys,
num_cams=3,
save_seperate_video=True,
fps=24,
verbose=True,
)
del render_results, vis_frame_dict
torch.cuda.empty_cache()
def scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, stage, tb_writer, train_iter,timer):
first_iter = 0
gaussians.training_setup(opt)
if checkpoint:
# breakpoint()
if stage == "coarse" and stage not in checkpoint:
print("start from fine stage, skip coarse stage.")
# process is in the coarse stage, but start from fine stage
return
if stage in checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if args.eval_only:
torch.save(gaussians._deformation.state_dict(),os.path.join(args.model_path, "deformation.pth"))
eval_dir = os.path.join(args.model_path,"eval")
os.makedirs(eval_dir,exist_ok=True)
viewpoint_stack_full = scene.getFullCameras().copy()
viewpoint_stack_test = scene.getTestCameras().copy()
viewpoint_stack_train = scene.getTrainCameras().copy()
# TODO:可视化光流 and 静动态点云分离
do_evaluation(
viewpoint_stack_full,
viewpoint_stack_test,
viewpoint_stack_train,
gaussians,
background,
pipe,
eval_dir,
render_full=True,
step=first_iter,
args=args
)
# save 静动态点云分离
# pcd_dir = os.path.join(eval_dir, "split_pcd")
# os.makedirs(eval_dir,exist_ok=True)
# gaussians.save_ply_split(pcd_dir)
exit()
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
ema_psnr_for_log = 0.0
final_iter = train_iter
progress_bar = tqdm(range(first_iter, final_iter), desc="Training progress")
first_iter += 1
# lpips_model = lpips.LPIPS(net="alex").cuda()
# video_cams = scene.getVideoCameras()
test_cams = scene.getTestCameras()
train_cams = scene.getTrainCameras()
if not viewpoint_stack:
viewpoint_stack = [i for i in train_cams]
temp_list = copy.deepcopy(viewpoint_stack)
batch_size = opt.batch_size
print("data loading done")
count = 0
psnr_dict = {}
for iteration in range(first_iter, final_iter+1):
# if network_gui.conn == None:
# network_gui.try_connect()
# while network_gui.conn != None:
# try:
# net_image_bytes = None
# custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
# if custom_cam != None:
# count +=1
# viewpoint_index = (count ) % len(video_cams)
# if (count //(len(video_cams))) % 2 == 0:
# viewpoint_index = viewpoint_index
# else:
# viewpoint_index = len(video_cams) - viewpoint_index - 1
# # print(viewpoint_index)
# viewpoint = video_cams[viewpoint_index]
# custom_cam.time = viewpoint.time
# # print(custom_cam.time, viewpoint_index, count)
# net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer, stage=stage)["render"]
# net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
# network_gui.send(net_image_bytes, dataset.source_path)
# if do_training and ((iteration < int(opt.iterations)) or not keep_alive) :
# break
# except Exception as e:
# print(e)
# network_gui.conn = None
iter_start.record()
position_lr = gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# batch size
idx = 0
viewpoint_cams = []
while idx < batch_size :
viewpoint_cam = viewpoint_stack.pop(randint(0,len(viewpoint_stack)-1))
if not viewpoint_stack :
viewpoint_stack = temp_list.copy()
# print("find the worst viewpoint")
# 对 PSNR 字典按值进行排序,找出最低的 PSNR 值对应的 UID, 最后一个psnr 没办法得到,所以实际上比较 n*3 -1 个psnr
# with torch.no_grad():
# if 'fine' in stage:
# psnr_dict = sorted(psnr_dict.items(), key=lambda x: x[1])
# # 将最低 PSNR 值对应的 UID 添加到列表中,直到列表的长度达到 args.end_time / 5
# lowest_psnr_uids = []
# for uid, _ in psnr_dict[:(args.end_time+1)]:
# lowest_psnr_uids.append(uid)
# psnr_dict = {}
# # 将 lowest_psnr_uids 中 UID 对应的 Camera 对象加到 viewpoint_stack 的末尾
# for uid in lowest_psnr_uids:
# for cam in viewpoint_stack:
# if cam.uid == int(uid):
# viewpoint_stack.append(cam)
# break
viewpoint_cams.append(viewpoint_cam)
idx +=1
if len(viewpoint_cams) == 0:
continue
# print(len(viewpoint_cams))
# breakpoint()
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
images = []
gt_images = []
depth_preds = []
gt_depths = []
radii_list = []
visibility_filter_list = []
viewspace_point_tensor_list = []
for viewpoint_cam in viewpoint_cams:
render_pkg = render(viewpoint_cam, gaussians, pipe, background, stage=stage,return_dx=True,render_feat = True if ('fine' in stage and args.feat_head) else False)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
depth_pred = render_pkg["depth"]
depth_preds.append(depth_pred.unsqueeze(0))
images.append(image.unsqueeze(0))
gt_image = viewpoint_cam.original_image.cuda()
gt_depth = viewpoint_cam.depth_map.cuda()
gt_images.append(gt_image.unsqueeze(0))
gt_depths.append(gt_depth.unsqueeze(0))
radii_list.append(radii.unsqueeze(0))
visibility_filter_list.append(visibility_filter.unsqueeze(0))
viewspace_point_tensor_list.append(viewspace_point_tensor)
radii = torch.cat(radii_list,0).max(dim=0).values
visibility_filter = torch.cat(visibility_filter_list).any(dim=0)
image_tensor = torch.cat(images,0)
depth_pred_tensor = torch.cat(depth_preds,0)
gt_image_tensor = torch.cat(gt_images,0)
gt_depth_tensor = torch.cat(gt_depths,0).float()
# Loss
# breakpoint()
Ll1 = l1_loss(image_tensor, gt_image_tensor[:,:3,:,:])
psnr_ = psnr(image_tensor, gt_image_tensor).mean().double()
# if 'fine' in stage:
# psnr_dict.update({f"{viewpoint_cam.uid}": psnr_})
# norm
loss = Ll1
# dx loss
if 'fine' in stage and not args.no_dx and opt.lambda_dx !=0:
dx_abs = torch.abs(render_pkg['dx'])
dx_loss = torch.mean(dx_abs) * opt.lambda_dx
loss += dx_loss
if 'fine' in stage and not args.no_dshs and opt.lambda_dshs != 0:
dshs_abs = torch.abs(render_pkg['dshs'])
dshs_loss = torch.mean(dshs_abs) * opt.lambda_dshs
loss += dshs_loss
if opt.lambda_depth != 0:
depth_loss = compute_depth("l2", depth_pred_tensor, gt_depth_tensor) * opt.lambda_depth
loss += depth_loss
if stage == "fine" and hyper.time_smoothness_weight != 0:
# tv_loss = 0
tv_loss = gaussians.compute_regulation(hyper.time_smoothness_weight, hyper.l1_time_planes, hyper.plane_tv_weight)
loss += tv_loss
if opt.lambda_dssim != 0:
ssim_loss = ssim(image_tensor,gt_image_tensor)
loss += opt.lambda_dssim * (1.0-ssim_loss)
if stage == 'fine' and args.feat_head:
feat = render_pkg['feat'].to('cuda') # [3,640,960]
gt_feat = viewpoint_cam.feat_map.permute(2,0,1).to('cuda')
loss_feat = l2_loss(feat, gt_feat) * opt.lambda_feat
loss += loss_feat
# if opt.lambda_lpips !=0:
# lpipsloss = lpips_loss(image_tensor,gt_image_tensor,lpips_model)
# loss += opt.lambda_lpips * lpipsloss
loss.backward()
if torch.isnan(loss).any():
print("loss is nan,end training, reexecv program now.")
os.execv(sys.executable, [sys.executable] + sys.argv)
viewspace_point_tensor_grad = torch.zeros_like(viewspace_point_tensor)
for idx in range(0, len(viewspace_point_tensor_list)):
viewspace_point_tensor_grad = viewspace_point_tensor_grad + viewspace_point_tensor_list[idx].grad
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
ema_psnr_for_log = 0.4 * psnr_ + 0.6 * ema_psnr_for_log
total_point = gaussians._xyz.shape[0]
if iteration % 100 == 0:
dynamic_points = 0
if 'fine' in stage and not args.no_dx:
dx_abs = torch.abs(render_pkg['dx']) # [N,3]
max_values = torch.max(dx_abs, dim=1)[0] # [N]
thre = torch.mean(max_values)
mask = (max_values > thre)
dynamic_points = torch.sum(mask).item()
print_dict = {
"step": f"{iteration}",
"Loss": f"{ema_loss_for_log:.{7}f}",
"psnr": f"{psnr_:.{2}f}",
"dynamic point": f"{dynamic_points}",
"point":f"{total_point}",
}
progress_bar.set_postfix(print_dict)
metrics_file = f"{scene.model_path}/logger.json"
with open(metrics_file, "a") as f:
json.dump(print_dict, f)
f.write('\n')
progress_bar.update(100)
if iteration == final_iter:
progress_bar.close()
# Log and save
timer.pause()
# training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, [pipe, background], stage)
# if (iteration in saving_iterations):
# print("\n[ITER {}] Saving Gaussians".format(iteration))
# scene.save(iteration, stage)
if dataset.render_process:
if (iteration < 10000 and iteration % 1000 == 999) \
or (iteration < 30000 and iteration % 2000 == 1999) \
or (iteration < 60000 and iteration % 3000 == 2999) :
# breakpoint()
if len(test_cams) != 0:
render_training_image(scene, gaussians, [test_cams[iteration%len(test_cams)]], render, pipe, background, stage+"test", iteration,timer.get_elapsed_time())
render_training_image(scene, gaussians, [train_cams[iteration%len(train_cams)]], render, pipe, background, stage+"train", iteration,timer.get_elapsed_time())
# total_images.append(to8b(temp_image).transpose(1,2,0))
timer.start()
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor_grad, visibility_filter)
if stage == "coarse":
opacity_threshold = opt.opacity_threshold_coarse
densify_threshold = opt.densify_grad_threshold_coarse
else:
opacity_threshold = opt.opacity_threshold_fine_init - iteration*(opt.opacity_threshold_fine_init - opt.opacity_threshold_fine_after)/(opt.densify_until_iter)
densify_threshold = opt.densify_grad_threshold_fine_init - iteration*(opt.densify_grad_threshold_fine_init - opt.densify_grad_threshold_after)/(opt.densify_until_iter )
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0 and gaussians.get_xyz.shape[0]<2000000:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify(densify_threshold, opacity_threshold, scene.cameras_extent, size_threshold, 5, 5, scene.model_path, iteration, stage)
if iteration > opt.pruning_from_iter and iteration % opt.pruning_interval == 0 : # and gaussians.get_xyz.shape[0]>200000
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.prune(densify_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
# if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0 :
# if iteration % opt.densification_interval == 0 and gaussians.get_xyz.shape[0]<360000 and opt.add_point:
# gaussians.grow(5,5,scene.model_path,iteration,stage)
# torch.cuda.empty_cache()
if iteration % opt.opacity_reset_interval == 0:
print("reset opacity")
gaussians.reset_opacity()
# Optimizer step
if iteration < final_iter+1:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
save_path= "chkpnt" +f"_{stage}_" + str(30000) + ".pth"
for file in os.listdir(scene.model_path):
if file.endswith(".pth") and file != save_path:
os.remove(os.path.join(scene.model_path, file))
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" +f"_{stage}_" + str(iteration) + ".pth")
if (iteration == 30000):
eval_dir = os.path.join(args.model_path,"eval")
os.makedirs(eval_dir,exist_ok=True)
viewpoint_stack_full = scene.getFullCameras().copy()
viewpoint_stack_test = scene.getTestCameras().copy()
viewpoint_stack_train = scene.getTrainCameras().copy()
do_evaluation(
viewpoint_stack_full,
viewpoint_stack_test,
viewpoint_stack_train,
gaussians,
background,
pipe,
eval_dir,
render_full=True,
step=iteration,
args=args
)
def training(dataset, hyper, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, expname):
# first_iter = 0
tb_writer = prepare_output_and_logger(expname)
gaussians = GaussianModel(dataset.sh_degree, hyper)
dataset.model_path = args.model_path
timer = Timer()
scene = Scene(dataset, gaussians, load_coarse=None)
timer.start()
# eval
eval_dir = os.path.join(args.model_path,"eval")
os.makedirs(eval_dir,exist_ok=True)
viewpoint_stack_full = scene.getFullCameras().copy()
viewpoint_stack_test = scene.getTestCameras().copy()
viewpoint_stack_train = scene.getTrainCameras().copy()
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# if args.merge and args.prior_checkpoint and args.prior_checkpoint2:
# # 这个是最新的,deformation的网络要用这个
# gaussians_new = GaussianModel(dataset.sh_degree, hyper)
# (model_params, first_iter) = torch.load(args.prior_checkpoint2)
# gaussians_new.restore(model_params, opt)
# deformation_net = gaussians_new._deformation
# del gaussians_new
# gc.collect()
# torch.cuda.empty_cache()
# # 这个是上一个
# gaussians_prev = GaussianModel(dataset.sh_degree, hyper)
# (model_params, first_iter) = torch.load(args.prior_checkpoint)
# gaussians_prev.restore(model_params, opt)
# gaussians_prev._deformation = deformation_net.to('cuda')
# do_evaluation(
# viewpoint_stack_full,
# viewpoint_stack_test,
# gaussians_prev,
# background,
# pipe,
# eval_dir,
# render_full=True,
# step=99999,
# args=args
# )
# merge
# gaussians = merge_models(gaussians_new, gaussians_prev, hyper, gaussians)
scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, "coarse", tb_writer, opt.coarse_iterations,timer)
if args.prior_checkpoint:
assert 'fine' in args.prior_checkpoint
gaussians_prev = GaussianModel(dataset.sh_degree, hyper)
(model_params, first_iter) = torch.load(args.prior_checkpoint)
gaussians_prev.restore(model_params, opt)
deformation_net = gaussians_prev._deformation
del gaussians_prev
gc.collect()
torch.cuda.empty_cache()
gaussians._deformation = deformation_net.to('cuda')
scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
checkpoint_iterations, checkpoint, debug_from,
gaussians, scene, "fine", tb_writer, opt.iterations,timer)
do_evaluation(
viewpoint_stack_full,
viewpoint_stack_test,
viewpoint_stack_train,
gaussians,
background,
pipe,
eval_dir,
render_full=True,
step=opt.iterations,
args=args
)
def prepare_output_and_logger(expname):
if not args.model_path:
# if os.getenv('OAR_JOB_ID'):
# unique_str=os.getenv('OAR_JOB_ID')
# else:
# unique_str = str(uuid.uuid4())
unique_str = expname
args.model_path = os.path.join("./output/", unique_str)
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = None
# tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, stage):
if tb_writer:
tb_writer.add_scalar(f'{stage}/train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar(f'{stage}/train_loss_patchestotal_loss', loss.item(), iteration)
tb_writer.add_scalar(f'{stage}/iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
if len(scene.getTestCameras()) != 0:
validation_configs = ({'name': 'test', 'cameras' : [scene.getTestCameras()[idx % len(scene.getTestCameras())] for idx in range(10, 5000, 299)]},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(10, 5000, 299)]})
else:
validation_configs = ({'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(10, 5000, 299)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, scene.gaussians,stage=stage, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
try:
if tb_writer and (idx < 5):
tb_writer.add_images(stage + "/"+config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(stage + "/"+config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
except:
pass
l1_test += l1_loss(image, gt_image).mean().double()
# mask=viewpoint.mask
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
# print("sh feature",scene.gaussians.get_features.shape)
if tb_writer:
tb_writer.add_scalar(stage + "/"+config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(stage+"/"+config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram(f"{stage}/scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar(f'{stage}/total_points', scene.gaussians.get_xyz.shape[0], iteration)
tb_writer.add_scalar(f'{stage}/deformation_rate', scene.gaussians._deformation_table.sum()/scene.gaussians.get_xyz.shape[0], iteration)
tb_writer.add_histogram(f"{stage}/scene/motion_histogram", scene.gaussians._deformation_accum.mean(dim=-1)/100, iteration,max_bins=500)
torch.cuda.empty_cache()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
# Set up command line argument parser
# torch.set_default_tensor_type('torch.FloatTensor')
torch.cuda.empty_cache()
parser = ArgumentParser(description="Training script parameters")
setup_seed(6666)
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
hp = ModelHiddenParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[3000,7000,14000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[ 14000, 20000, 30_000, 45000, 60000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[10_000,20_000,30_000,40_000,50_000])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--expname", type=str, default = "waymo")
parser.add_argument("--configs", type=str, default = "")
parser.add_argument("--eval_only", action="store_true", help="perform evaluation only")
parser.add_argument("--prior_checkpoint", type=str, default = None)
parser.add_argument("--merge", action="store_true", help="merge gaussians")
parser.add_argument("--prior_checkpoint2", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
if args.configs:
import mmcv
from utils.params_utils import merge_hparams
config = mmcv.Config.fromfile(args.configs)
args = merge_hparams(args, config)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
# network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), hp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.expname)
# All done
print("\nTraining complete.")