-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpatch_diff.py
155 lines (105 loc) · 6.4 KB
/
patch_diff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
from data_structures import UP, DOWN, LEFT, RIGHT, opposite_side, get_half_patch_from_patch
def patch_diff(img1, img2):
"""Computing the sum of squared differences (SSD) between two images."""
if img1.shape != img2.shape:
print("Images don't have the same shape.")
return
return np.sum((np.array(img1, dtype=np.float32) - np.array(img2, dtype=np.float32)) ** 2)
# def patch_diff_img(image, x1, y1, x2, y2):
# patch1_rgb = image.rgb[x1: x1 + image.patch_size, y1: y1 + image.patch_size, :]
# patch2_rgb = image.rgb[x2: x2 + image.patch_size, y2: y2 + image.patch_size, :]
#
# return np.sum((np.array(patch1_rgb, dtype=np.float32) - np.array(patch2_rgb, dtype=np.float32)) ** 2)
#
#
# def patch_diff_ir(image, x1, y1, x2, y2):
# patch1_ir = image.ir[x1: x1 + image.patch_size, y1: y1 + image.patch_size, :]
# patch2_ir = image.ir[x2: x2 + image.patch_size, y2: y2 + image.patch_size, :]
#
# patch1_descr = max_pool(patch1_ir, image.patch_size)
# patch2_descr = max_pool(patch2_ir, image.patch_size)
#
# return np.sum((np.array(patch1_descr, dtype=np.float32) - np.array(patch2_descr, dtype=np.float32)) ** 2)
# def patch_diff1(image, x1, y1, x2, y2):
# if image.ir is not None:
# patch1_ir = image.ir[x1: x1 + image.patch_size, y1: y1 + image.patch_size, :]
# patch2_ir = image.ir[x2: x2 + image.patch_size, y2: y2 + image.patch_size, :]
#
# patch1_descr = max_pool(patch1_ir)
# patch2_descr = max_pool(patch2_ir)
#
# return np.sum((np.array(patch1_descr, dtype=np.float32) - np.array(patch2_descr, dtype=np.float32)) ** 2)
#
# else:
# patch1_rgb = image.rgb[x1: x1 + image.patch_size, y1: y1 + image.patch_size, :]
# patch2_rgb = image.rgb[x2: x2 + image.patch_size, y2: y2 + image.patch_size, :]
#
# return np.sum((np.array(patch1_rgb, dtype=np.float32) - np.array(patch2_rgb, dtype=np.float32)) ** 2)
def non_masked_patch_diff(image, x, y, x_compare, y_compare):
# compare just the masked part, which will be on the first patch
mask = image.mask[x: x + image.patch_size, y: y + image.patch_size]
if image.ir is not None:
patch_ir = image.ir[x: x + image.patch_size, y: y + image.patch_size, :]
patch_compare_ir = image.ir[x_compare: x_compare + image.patch_size, y_compare: y_compare + image.patch_size, :]
nr_channels = patch_ir.shape[2]
mask_more_ch = np.repeat(mask, nr_channels, axis=1).reshape((image.patch_size, image.patch_size, nr_channels))
patch_ir = patch_ir * (1 - mask_more_ch)
patch_compare_ir = patch_compare_ir * (1 - mask_more_ch)
patch_descr = max_pool(patch_ir)
patch_compare_descr = max_pool(patch_compare_ir)
return np.sum((np.array(patch_descr, dtype=np.float32) - np.array(patch_compare_descr, dtype=np.float32)) ** 2)
else:
patch_rgb = image.rgb[x: x + image.patch_size, y: y + image.patch_size, :]
patch_compare_rgb = image.rgb[x_compare: x_compare + image.patch_size, y_compare: y_compare + image.patch_size, :]
mask_3ch = np.repeat(mask, 3, axis=1).reshape((image.patch_size, image.patch_size, 3))
patch_rgb = patch_rgb * (1 - mask_3ch)
patch_compare_rgb = patch_compare_rgb * (1 - mask_3ch)
return np.sum((np.array(patch_rgb, dtype=np.float32) - np.array(patch_compare_rgb, dtype=np.float32)) ** 2)
def half_patch_diff(image, x1, y1, x2, y2, side):
if image.ir is not None:
patch1_ir = image.ir[x1: x1 + image.patch_size, y1: y1 + image.patch_size, :]
patch2_ir = image.ir[x2: x2 + image.patch_size, y2: y2 + image.patch_size, :]
patch1_ir_half = get_half_patch_from_patch(patch1_ir, image.stride, side)
patch2_ir_half = get_half_patch_from_patch(patch2_ir, image.stride, opposite_side(side))
patch1_descr = max_pool(patch1_ir_half)
patch2_descr = max_pool(patch2_ir_half)
return np.sum((np.array(patch1_descr, dtype=np.float32) - np.array(patch2_descr, dtype=np.float32)) ** 2)
else:
patch1_rgb = image.rgb[x1: x1 + image.patch_size, y1: y1 + image.patch_size, :]
patch2_rgb = image.rgb[x2: x2 + image.patch_size, y2: y2 + image.patch_size, :]
patch1_rgb_half = get_half_patch_from_patch(patch1_rgb, image.stride, side)
patch2_rgb_half = get_half_patch_from_patch(patch2_rgb, image.stride, opposite_side(side))
return np.sum((np.array(patch1_rgb_half, dtype=np.float32) - np.array(patch2_rgb_half, dtype=np.float32)) ** 2)
def max_pool(patch_ir, pool_size=8):
height, width, nr_channels = patch_ir.shape
patch_ir_reshaped = patch_ir.reshape(height // pool_size, pool_size,
width // pool_size, pool_size, nr_channels)
patch_descr = patch_ir_reshaped.max(axis=1).max(axis=2)
return patch_descr
def max_pool_pad_full_process(patch_ir, pool_size=8):
height, width, nr_channels = patch_ir.shape
padding_height_total = pool_size - (height % pool_size)
padding_width_total = pool_size - (width % pool_size)
padding_height_left = padding_height_total // 2
padding_height_right = padding_height_total - padding_height_left
padding_width_left = padding_width_total // 2
padding_width_right = padding_width_total - padding_width_left
patch_ir = np.pad(patch_ir, ((padding_height_left, padding_height_right), (padding_width_left, padding_width_right),
(0, 0)), mode='constant')
height += padding_height_total
width += padding_width_total
patch_ir_reshaped = patch_ir.reshape(height // pool_size, pool_size,
width // pool_size, pool_size, nr_channels)
patch_descr = patch_ir_reshaped.max(axis=1).max(axis=2)
return patch_descr
def max_pool_padding(patch_ir, padding_height_left, padding_height_right, padding_width_left, padding_width_right, pool_size=8):
height, width, nr_channels = patch_ir.shape
patch_ir = np.pad(patch_ir, ((padding_height_left, padding_height_right), (padding_width_left, padding_width_right),
(0, 0)), mode='constant')
height += padding_height_left + padding_height_right
width += padding_width_left + padding_width_right
patch_ir_reshaped = patch_ir.reshape(height // pool_size, pool_size,
width // pool_size, pool_size, nr_channels)
patch_descr = patch_ir_reshaped.max(axis=1).max(axis=2)
return patch_descr