-
Notifications
You must be signed in to change notification settings - Fork 1
/
etl.py
235 lines (199 loc) · 8.41 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import configparser
from datetime import datetime
import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, col
from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, \
date_format
from pyspark.sql.types import StructType as R, StructField as Fld, \
DoubleType as Dbl, LongType as Long, StringType as Str, \
IntegerType as Int, DecimalType as Dec, DateType as Date, \
TimestampType as Stamp
config = configparser.ConfigParser()
config.read("dl.cfg")
os.environ["AWS_ACCESS_KEY_ID"] = config["S3"]["AWS_ACCESS_KEY_ID"]
os.environ["AWS_SECRET_ACCESS_KEY"] = config["S3"]["AWS_SECRET_ACCESS_KEY"]
def create_spark_session():
"""
Creates a spark session.
:return: spark session object
"""
spark = SparkSession \
.builder \
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \
.getOrCreate()
print("Created spark session.")
return spark
def get_song_schema():
"""
Creates a schema for song data.
:return: schema
"""
song_schema = R([
Fld("num_songs", Int()),
Fld("artist_id", Str()),
Fld("artist_latitude", Dec()),
Fld("artist_longitude", Dec()),
Fld("artist_location", Str()),
Fld("artist_name", Str()),
Fld("song_id", Str()),
Fld("title", Str()),
Fld("duration", Dbl()),
Fld("year", Int())
])
return song_schema
def process_song_data(spark, input_data, output_data):
"""
Process song data by creating songs and artist table
and writing the result to a given S3 bucket.
:param spark: spark session object
:param input_data: S3 bucket with input data
:param output_data: S3 bucket for output data
"""
# get filepath to song data file
song_data = input_data + "song_data/*/*/*/*.json"
# read song data file
print("Reading song data.")
df = spark.read.json(song_data, schema = get_song_schema())
# extract columns to create songs table
songs_table = df.select("song_id",
"title",
"artist_id",
"year",
"duration").dropDuplicates(["song_id"])
# write songs table to parquet files partitioned by year and artist
print("Writing songs_table.")
songs_table.write.parquet(output_data + "songs_table.parquet",
partitionBy = ["year", "artist_id"],
mode = "overwrite")
# extract columns to create artists table
artists_table = df.select("artist_id",
"artist_name",
"artist_location",
"artist_latitude",
"artist_longitude").dropDuplicates(["artist_id"])
# write artists table to parquet files
print("Writing artists_table")
artists_table.write.parquet(output_data + "artists_table.parquet",
mode = "overwrite")
def get_log_schema():
"""
Creates a schema for log data.
:return: schema
"""
log_schema = R([
Fld("artist", Str()),
Fld("auth", Str()),
Fld("firstName", Str()),
Fld("gender", Str()),
Fld("itemInSession", Str()),
Fld("lastName", Str()),
Fld("length", Dbl()),
Fld("level", Str()),
Fld("location", Str()),
Fld("method", Str()),
Fld("page", Str()),
Fld("registration", Dbl()),
Fld("sessionId", Str()),
Fld("song", Str()),
Fld("status", Str()),
Fld("ts", Long()),
Fld("userAgent", Str()),
Fld("userId", Str())
])
return log_schema
def process_log_data(spark, input_data, output_data):
"""
Process log data by creating user and time table
and writing the result to a given S3 bucket.
:param spark: spark session object
:param input_data: S3 bucket with input data
:param output_data: S3 bucket for output data
"""
# get filepath to log data file
log_data = input_data + "log-data/*/*/*.json"
# read log data file
print("Reading log file.")
df = spark.read.json(log_data, schema = get_log_schema())
# filter by actions for song plays
df = df.filter(df.page == "NextSong")
# extract columns for users table
users_table = df.selectExpr("userId as user_id",
"firstName as first_name",
"lastName as last_name",
"gender",
"level").dropDuplicates(["user_id"])
# write users table to parquet files
print("Writing users_table")
users_table.write.parquet(output_data + "users_table.parquet",
mode = "overwrite")
# create timestamp column from original timestamp column
get_timestamp = udf(lambda x: datetime.fromtimestamp((x / 1000)), Stamp())
df = df.withColumn("timestamp", get_timestamp(col("ts")))
# create datetime column from original timestamp column
get_datetime = udf(lambda x: datetime.fromtimestamp((x / 1000)), Stamp())
df = df.withColumn("datetime", get_datetime(col("ts")))
# extract columns to create time table
time_table = df.selectExpr("timestamp as start_time",
"hour(timestamp) as hour",
"dayofmonth(timestamp) as day",
"weekofyear(timestamp) as week",
"month(timestamp) as month",
"year(timestamp) as year",
"dayofweek(timestamp) as weekday"
).dropDuplicates(["start_time"])
# write time table to parquet files partitioned by year and month
print("Writing time_table.")
time_table.write.parquet(output_data + "time_table.parquet",
partitionBy = ["year", "month"],
mode = "overwrite")
# read in song data to use for songplays table
song_data = input_data + "song_data/*/*/*/*.json"
song_df = spark.read.json(song_data, schema = get_song_schema())
# extract columns from joined song and log datasets to create
# songplays table
song_df.createOrReplaceTempView("song_data")
df.createOrReplaceTempView("log_data")
songplays_table = spark.sql("""
SELECT monotonically_increasing_id() as songplay_id,
ld.timestamp as start_time,
year(ld.timestamp) as year,
month(ld.timestamp) as month,
ld.userId as user_id,
ld.level as level,
sd.song_id as song_id,
sd.artist_id as artist_id,
ld.sessionId as session_id,
ld.location as location,
ld.userAgent as user_agent
FROM log_data ld
JOIN song_data sd
ON (ld.song = sd.title
AND ld.length = sd.duration
AND ld.artist = sd.artist_name)
""")
# write songplays table to parquet files partitioned by year and month
print("Writing songplays_table")
songplays_table.write.parquet(output_data + "songplays_table.parquet",
partitionBy=["year", "month"],
mode="overwrite")
def test_parquet(spark, output_data):
"""
Print first row of output data from S3 bucket
and number of rows.
:param spark: spark session object
:param output_data: S3 bucket for output data
"""
songplays_table = spark.read.parquet(output_data + "songplays_table.parquet")
print("Reading output data and printing row.")
print(songplays_table.head(1))
print("Number of rows: {}".format(songplays_table.count()))
def main():
spark = create_spark_session()
input_data = "s3a://udacity-dend/"
output_data = "s3a://dend-lake-bucket/"
process_song_data(spark, input_data, output_data)
process_log_data(spark, input_data, output_data)
test_parquet(spark, output_data)
if __name__ == "__main__":
main()