-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAlgorithm_mapping_variants_reporting_class_intronLocation_updown.py
122 lines (103 loc) · 4.91 KB
/
Algorithm_mapping_variants_reporting_class_intronLocation_updown.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# algorithm for mapping identified variants onto the genomic location and reporting the hit class
# python3 Algorithm_mapping_variants_reporting_class_intronLocation_updown.py ChrAll_knownGene.txt.exon VCF_input_file_in_tab_delimited_format.vcf
import sys
from sys import argv
import csv
exon_file = None
snp_file = None
exon_buffer = None
intron_option = None
# increase field limit
limit = sys.maxsize
while True:
# decrease limit by factor 10 as long as OverflowError occurs
try:
csv.field_size_limit(limit)
break
except OverflowError:
limit = int(limit/10)
if(len(argv) == 3):
exon_file = argv[1]
snp_file = argv[2]
print('The program assumes that you do NOT want to report how far the variant falls in the exon boundary.')
elif(len(argv) == 4):
exon_file = argv[1]
snp_file = argv[2]
exon_buffer = int(argv[3])
print('The program assumes that you DO want to report how far the variant falls in the exon boundary.')
print('Only variants flanking their nearby exon within <=' + str(exon_buffer) + ' bp are reported')
intron_option = True
else:
print('The input commands do not meet the requirement. Please see the README file and try again.')
quit()
output_file = snp_file + '.append'
class FeatureType:
def __init__(self, name, ext):
self.name = name
self.ext = ext
self.chrom = {} # start position -> stop position
self.gene = {} # chrom_start -> stop position
self.starts = {} # chrom -> start positions
for line in list(csv.reader(open(exon_file + '.' + ext + '_link_shrink'), delimiter='\t')):
self.chrom[line[0]] = int(line[1])
for line in list(csv.reader(open(exon_file + '.' + ext + '_gene'), delimiter='\t')):
self.gene[line[0]] = line[1]
# store start positions for binary search
for line in list(csv.reader(open(exon_file + '.' + ext), delimiter='\t')):
chrom = line[0]
arr = []
for start in line[1:]:
if start != '':
arr.append(int(start))
if chrom not in self.starts:
self.starts[chrom] = arr
else:
self.starts.extend(arr)
def binary_search(starts, snp_start):
lo = 0
hi = len(starts) - 1
while lo < hi:
mid = (lo + hi + 1) // 2
if snp_start >= starts[mid]:
lo = mid
else:
hi = mid - 1
return lo
feature_types = [FeatureType('CDSHIT', 'cds'), FeatureType('INTRON', 'intron'), FeatureType('UTR5', 'utr5'), FeatureType('UTR3', 'utr3'), FeatureType('UPSTREAM', 'upstream'), FeatureType('DOWNSTREAM', 'downstream')]
# CDS - start is 0-indexed, end is 1-indexed
# UTR5 - start is 0-indexed, end is 0-indexed
# UPSTREAM - start is 0-indexed, end is 0-indexed
# UTR3 - start is 1-indexed, end is 1-indexed
# DOWNSTREAM - start is 1-indexed, end is 1-indexed
# INTRON - start is 1-indexed, add buffer because end is 0-indexed
with open(output_file, 'w', newline='') as file:
writer = csv.writer(file, delimiter='\t')
# map vcf variant back onto genome location and report hit class
for line in list(csv.reader(open(snp_file), delimiter='\t')):
if line[0][0] == '#':
continue
snp_chr = line[0]
if 'chr' not in snp_chr:
snp_chr = 'chr' + snp_chr
if snp_chr == 'chrMT':
snp_chr = 'chrM'
snp_start = int(line[1])
for typ in feature_types:
starts = typ.starts[snp_chr]
mid = binary_search(starts, snp_start-1)
output = line.copy()
if typ.name == 'INTRON' and intron_option:
if snp_start >= starts[mid] and snp_start < starts[mid] + exon_buffer or snp_start <= typ.chrom[snp_chr + '_' + str(starts[mid])] + 1 and snp_start > typ.chrom[snp_chr + '_' + str(starts[mid])] + 1 - exon_buffer:
if snp_start - starts[mid] < exon_buffer:
output.append('INTRONHIT.' + str(snp_start - starts[mid] + 1) + '.right')
output.append(typ.gene[snp_chr + '_' + str(starts[mid])])
writer.writerow(output)
elif feature_types[1].chrom[snp_chr + '_' + str(starts[mid])] + 1 - snp_start < exon_buffer:
output.append('INTRONHIT.' + str(typ.chrom[snp_chr + '_' + str(starts[mid])] - snp_start + 2))
output.append(typ.gene[snp_chr + '_' + str(starts[mid])])
writer.writerow(output)
elif snp_start-1 >= starts[mid] and snp_start <= typ.chrom[snp_chr + '_' + str(starts[mid])]:
output.append(typ.name)
output.append(typ.gene[snp_chr + '_' + str(starts[mid])])
writer.writerow(output)
print("Done for SNP " + snp_chr + "_" + str(snp_start) + ".")