-
Notifications
You must be signed in to change notification settings - Fork 786
/
Copy pathtrain_model.py
274 lines (234 loc) · 11.8 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# -*- coding: utf-8 -*-
import json
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import time
from PIL import Image
import random
import os
from cnnlib.network import CNN
class TrainError(Exception):
pass
class TrainModel(CNN):
def __init__(self, train_img_path, verify_img_path, char_set, model_save_dir, cycle_stop, acc_stop, cycle_save,
image_suffix, train_batch_size, test_batch_size, verify=False):
# 训练相关参数
self.cycle_stop = cycle_stop
self.acc_stop = acc_stop
self.cycle_save = cycle_save
self.train_batch_size = train_batch_size
self.test_batch_size = test_batch_size
self.image_suffix = image_suffix
char_set = [str(i) for i in char_set]
# 打乱文件顺序+校验图片格式
self.train_img_path = train_img_path
self.train_images_list = os.listdir(train_img_path)
# 校验格式
if verify:
self.confirm_image_suffix()
# 打乱文件顺序
random.seed(time.time())
random.shuffle(self.train_images_list)
# 验证集文件
self.verify_img_path = verify_img_path
self.verify_images_list = os.listdir(verify_img_path)
# 获得图片宽高和字符长度基本信息
label, captcha_array = self.gen_captcha_text_image(train_img_path, self.train_images_list[0])
captcha_shape = captcha_array.shape
captcha_shape_len = len(captcha_shape)
if captcha_shape_len == 3:
image_height, image_width, channel = captcha_shape
self.channel = channel
elif captcha_shape_len == 2:
image_height, image_width = captcha_shape
else:
raise TrainError("图片转换为矩阵时出错,请检查图片格式")
# 初始化变量
super(TrainModel, self).__init__(image_height, image_width, len(label), char_set, model_save_dir)
# 相关信息打印
print("-->图片尺寸: {} X {}".format(image_height, image_width))
print("-->验证码长度: {}".format(self.max_captcha))
print("-->验证码共{}类 {}".format(self.char_set_len, char_set))
print("-->使用测试集为 {}".format(train_img_path))
print("-->使验证集为 {}".format(verify_img_path))
# test model input and output
print(">>> Start model test")
batch_x, batch_y = self.get_batch(0, size=100)
print(">>> input batch images shape: {}".format(batch_x.shape))
print(">>> input batch labels shape: {}".format(batch_y.shape))
@staticmethod
def gen_captcha_text_image(img_path, img_name):
"""
返回一个验证码的array形式和对应的字符串标签
:return:tuple (str, numpy.array)
"""
# 标签
label = img_name.split("_")[0]
# 文件
img_file = os.path.join(img_path, img_name)
captcha_image = Image.open(img_file)
captcha_array = np.array(captcha_image) # 向量化
return label, captcha_array
def get_batch(self, n, size=128):
batch_x = np.zeros([size, self.image_height * self.image_width]) # 初始化
batch_y = np.zeros([size, self.max_captcha * self.char_set_len]) # 初始化
max_batch = int(len(self.train_images_list) / size)
# print(max_batch)
if max_batch - 1 < 0:
raise TrainError("训练集图片数量需要大于每批次训练的图片数量")
if n > max_batch - 1:
n = n % max_batch
s = n * size
e = (n + 1) * size
this_batch = self.train_images_list[s:e]
# print("{}:{}".format(s, e))
for i, img_name in enumerate(this_batch):
label, image_array = self.gen_captcha_text_image(self.train_img_path, img_name)
image_array = self.convert2gray(image_array) # 灰度化图片
batch_x[i, :] = image_array.flatten() / 255 # flatten 转为一维
batch_y[i, :] = self.text2vec(label) # 生成 oneHot
return batch_x, batch_y
def get_verify_batch(self, size=100):
batch_x = np.zeros([size, self.image_height * self.image_width]) # 初始化
batch_y = np.zeros([size, self.max_captcha * self.char_set_len]) # 初始化
verify_images = []
for i in range(size):
verify_images.append(random.choice(self.verify_images_list))
for i, img_name in enumerate(verify_images):
label, image_array = self.gen_captcha_text_image(self.verify_img_path, img_name)
image_array = self.convert2gray(image_array) # 灰度化图片
batch_x[i, :] = image_array.flatten() / 255 # flatten 转为一维
batch_y[i, :] = self.text2vec(label) # 生成 oneHot
return batch_x, batch_y
def confirm_image_suffix(self):
# 在训练前校验所有文件格式
print("开始校验所有图片后缀")
for index, img_name in enumerate(self.train_images_list):
print("{} image pass".format(index), end='\r')
if not img_name.endswith(self.image_suffix):
raise TrainError('confirm images suffix:you request [.{}] file but get file [{}]'
.format(self.image_suffix, img_name))
print("所有图片格式校验通过")
def train_cnn(self):
y_predict = self.model()
print(">>> input batch predict shape: {}".format(y_predict.shape))
print(">>> End model test")
# 计算概率 损失
with tf.name_scope('cost'):
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_predict, labels=self.Y))
# 梯度下降
with tf.name_scope('train'):
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost)
# 计算准确率
predict = tf.reshape(y_predict, [-1, self.max_captcha, self.char_set_len]) # 预测结果
max_idx_p = tf.argmax(predict, 2) # 预测结果
max_idx_l = tf.argmax(tf.reshape(self.Y, [-1, self.max_captcha, self.char_set_len]), 2) # 标签
# 计算准确率
correct_pred = tf.equal(max_idx_p, max_idx_l)
with tf.name_scope('char_acc'):
accuracy_char_count = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
with tf.name_scope('image_acc'):
accuracy_image_count = tf.reduce_mean(tf.reduce_min(tf.cast(correct_pred, tf.float32), axis=1))
# 模型保存对象
saver = tf.train.Saver()
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
# 恢复模型
if os.path.exists(self.model_save_dir):
try:
saver.restore(sess, self.model_save_dir)
# 判断捕获model文件夹中没有模型文件的错误
except ValueError:
print("model文件夹为空,将创建新模型")
else:
pass
# 写入日志
tf.summary.FileWriter("logs/", sess.graph)
step = 1
for i in range(self.cycle_stop):
batch_x, batch_y = self.get_batch(i, size=self.train_batch_size)
# 梯度下降训练
_, cost_ = sess.run([optimizer, cost],
feed_dict={self.X: batch_x, self.Y: batch_y, self.keep_prob: 0.75})
if step % 10 == 0:
# 基于训练集的测试
batch_x_test, batch_y_test = self.get_batch(i, size=self.train_batch_size)
acc_char = sess.run(accuracy_char_count, feed_dict={self.X: batch_x_test, self.Y: batch_y_test, self.keep_prob: 1.})
acc_image = sess.run(accuracy_image_count, feed_dict={self.X: batch_x_test, self.Y: batch_y_test, self.keep_prob: 1.})
print("第{}次训练 >>> ".format(step))
print("[训练集] 字符准确率为 {:.5f} 图片准确率为 {:.5f} >>> loss {:.10f}".format(acc_char, acc_image, cost_))
# with open("loss_train.csv", "a+") as f:
# f.write("{},{},{},{}\n".format(step, acc_char, acc_image, cost_))
# 基于验证集的测试
batch_x_verify, batch_y_verify = self.get_verify_batch(size=self.test_batch_size)
acc_char = sess.run(accuracy_char_count, feed_dict={self.X: batch_x_verify, self.Y: batch_y_verify, self.keep_prob: 1.})
acc_image = sess.run(accuracy_image_count, feed_dict={self.X: batch_x_verify, self.Y: batch_y_verify, self.keep_prob: 1.})
print("[验证集] 字符准确率为 {:.5f} 图片准确率为 {:.5f} >>> loss {:.10f}".format(acc_char, acc_image, cost_))
# with open("loss_test.csv", "a+") as f:
# f.write("{}, {},{},{}\n".format(step, acc_char, acc_image, cost_))
# 准确率达到99%后保存并停止
if acc_image > self.acc_stop:
saver.save(sess, self.model_save_dir)
print("验证集准确率达到99%,保存模型成功")
break
# 每训练500轮就保存一次
if i % self.cycle_save == 0:
saver.save(sess, self.model_save_dir)
print("定时保存模型成功")
step += 1
saver.save(sess, self.model_save_dir)
def recognize_captcha(self):
label, captcha_array = self.gen_captcha_text_image(self.train_img_path, random.choice(self.train_images_list))
f = plt.figure()
ax = f.add_subplot(111)
ax.text(0.1, 0.9, "origin:" + label, ha='center', va='center', transform=ax.transAxes)
plt.imshow(captcha_array)
# 预测图片
image = self.convert2gray(captcha_array)
image = image.flatten() / 255
y_predict = self.model()
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, self.model_save_dir)
predict = tf.argmax(tf.reshape(y_predict, [-1, self.max_captcha, self.char_set_len]), 2)
text_list = sess.run(predict, feed_dict={self.X: [image], self.keep_prob: 1.})
predict_text = text_list[0].tolist()
print("正确: {} 预测: {}".format(label, predict_text))
# 显示图片和预测结果
p_text = ""
for p in predict_text:
p_text += str(self.char_set[p])
print(p_text)
plt.text(20, 1, 'predict:{}'.format(p_text))
plt.show()
def main():
with open("conf/sample_config.json", "r") as f:
sample_conf = json.load(f)
train_image_dir = sample_conf["train_image_dir"]
verify_image_dir = sample_conf["test_image_dir"]
model_save_dir = sample_conf["model_save_dir"]
cycle_stop = sample_conf["cycle_stop"]
acc_stop = sample_conf["acc_stop"]
cycle_save = sample_conf["cycle_save"]
enable_gpu = sample_conf["enable_gpu"]
image_suffix = sample_conf['image_suffix']
use_labels_json_file = sample_conf['use_labels_json_file']
train_batch_size = sample_conf['train_batch_size']
test_batch_size = sample_conf['test_batch_size']
if use_labels_json_file:
with open("tools/labels.json", "r") as f:
char_set = f.read().strip()
else:
char_set = sample_conf["char_set"]
if not enable_gpu:
# 设置以下环境变量可开启CPU识别
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
tm = TrainModel(train_image_dir, verify_image_dir, char_set, model_save_dir, cycle_stop, acc_stop, cycle_save,
image_suffix, train_batch_size, test_batch_size, verify=False)
tm.train_cnn() # 开始训练模型
# tm.recognize_captcha() # 识别图片示例
if __name__ == '__main__':
main()