forked from martinakaduc/bana-tts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
params.py
executable file
·57 lines (49 loc) · 1.43 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the MIT License.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# MIT License for more details.
from model.utils import fix_len_compatibility
# data parameters
train_filelist_path = 'resources/filelists/bahnar/train.txt'
valid_filelist_path = 'resources/filelists/bahnar/valid.txt'
test_filelist_path = 'resources/filelists/bahnar/test.txt'
bndict_path = 'data/bahnar_lexicon.txt'
add_blank = True
n_feats = 80
n_spks = 1 # 247 for Libri-TTS filelist and 1 for LJSpeech
spk_emb_dim = 64
n_feats = 80
n_fft = 1024
sample_rate = 22050
hop_length = 256
win_length = 1024
f_min = 0
f_max = 8000
# encoder parameters
n_enc_channels = 192
filter_channels = 768
filter_channels_dp = 256
n_enc_layers = 6
enc_kernel = 3
enc_dropout = 0.1
n_heads = 2
window_size = 4
# decoder parameters
dec_dim = 64
beta_min = 0.05
beta_max = 20.0
pe_scale = 1000 # 1 for `grad-tts-old.pt` checkpoint
# training parameters
log_dir = 'logs/bahnar_exp'
test_size = 4
n_epochs = 10000
batch_size = 16
learning_rate = 1e-4
seed = 37
save_every = 1
out_size = fix_len_compatibility(2*22050//256)
curr_chkpt = 604
chkpt_path = f'./logs/bahnar_exp/grad_{curr_chkpt}.pt'