forked from thearn/webcam-pulse-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_pulse.py
151 lines (125 loc) · 5.11 KB
/
get_pulse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from lib.device import Camera
from lib.processors import findFaceGetPulse
from lib.interface import plotXY, imshow, waitKey,destroyWindow, moveWindow
import numpy as np
import datetime
class getPulseApp(object):
"""
Python application that finds a face in a webcam stream, then isolates the
forehead.
Then the average green-light intensity in the forehead region is gathered
over time, and the detected person's pulse is estimated.
"""
def __init__(self):
#Imaging device - must be a connected camera (not an ip camera or mjpeg
#stream)
self.camera = Camera(camera=0) #first camera by default
self.w,self.h = 0,0
self.pressed = 0
#Containerized analysis of recieved image frames (an openMDAO assembly)
#is defined next.
#This assembly is designed to handle all image & signal analysis,
#such as face detection, forehead isolation, time series collection,
#heart-beat detection, etc.
#Basically, everything that isn't communication
#to the camera device or part of the GUI
self.processor = findFaceGetPulse(bpm_limits = [50,160],
data_spike_limit = 2500.,
face_detector_smoothness = 10.)
#Init parameters for the cardiac data plot
self.bpm_plot = False
self.plot_title = "Cardiac info - raw signal, filtered signal, and PSD"
#Maps keystrokes to specified methods
#(A GUI window must have focus for these to work)
self.key_controls = {"s" : self.toggle_search,
"d" : self.toggle_display_plot,
"f" : self.write_csv}
def write_csv(self):
"""
Writes current data to a csv file
"""
bpm = " " + str(int(self.processor.measure_heart.bpm))
fn = str(datetime.datetime.now()).split(".")[0] + bpm + " BPM.csv"
data = np.array([self.processor.fft.times,
self.processor.fft.samples]).T
np.savetxt(fn, data, delimiter=',')
def toggle_search(self):
"""
Toggles a motion lock on the processor's face detection component.
Locking the forehead location in place significantly improves
data quality, once a forehead has been sucessfully isolated.
"""
state = self.processor.find_faces.toggle()
if not state:
self.processor.fft.reset()
print "face detection lock =",not state
def toggle_display_plot(self):
"""
Toggles the data display.
"""
if self.bpm_plot:
print "bpm plot disabled"
self.bpm_plot = False
destroyWindow(self.plot_title)
else:
print "bpm plot enabled"
self.bpm_plot = True
self.make_bpm_plot()
moveWindow(self.plot_title, self.w,0)
def make_bpm_plot(self):
"""
Creates and/or updates the data display
"""
plotXY([[self.processor.fft.times,
self.processor.fft.samples],
[self.processor.fft.even_times[4:-4],
self.processor.measure_heart.filtered[4:-4]],
[self.processor.measure_heart.freqs,
self.processor.measure_heart.fft]],
labels = [False, False, True],
showmax = [False,False, "bpm"],
label_ndigits = [0,0,0],
showmax_digits = [0,0,1],
skip = [3,3,4],
name = self.plot_title,
bg = self.processor.grab_faces.slices[0])
def key_handler(self):
"""
Handle keystrokes, as set at the bottom of __init__()
A plotting or camera frame window must have focus for keypresses to be
detected.
"""
self.pressed = waitKey(10) & 255 #wait for keypress for 10 ms
if self.pressed == 27: #exit program on 'esc'
print "exiting..."
self.camera.cam.release()
exit()
for key in self.key_controls.keys():
if chr(self.pressed) == key:
self.key_controls[key]()
def main_loop(self):
"""
Single iteration of the application's main loop.
"""
# Get current image frame from the camera
frame = self.camera.get_frame()
self.h,self.w,_c = frame.shape
#display unaltered frame
#imshow("Original",frame)
#set current image frame to the processor's input
self.processor.frame_in = frame
#process the image frame to perform all needed analysis
self.processor.run()
#collect the output frame for display
output_frame = self.processor.frame_out
#show the processed/annotated output frame
imshow("Processed",output_frame)
#create and/or update the raw data display if needed
if self.bpm_plot:
self.make_bpm_plot()
#handle any key presses
self.key_handler()
if __name__ == "__main__":
App = getPulseApp()
while True:
App.main_loop()