-
Notifications
You must be signed in to change notification settings - Fork 0
/
probability-distribution-independent-variables.nb
1509 lines (1478 loc) · 80.3 KB
/
probability-distribution-independent-variables.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 81994, 1500]
NotebookOptionsPosition[ 80955, 1459]
NotebookOutlinePosition[ 81311, 1475]
CellTagsIndexPosition[ 81268, 1472]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Prepare", "Section",
CellChangeTimes->{{3.678131748435039*^9, 3.6781317494981737`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"imgsize", "=", "600"}], ";"}]], "Input",
CellChangeTimes->{{3.6781317510596437`*^9, 3.67813175521054*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Independent Random Variables", "Chapter",
CellChangeTimes->{{3.678131592115963*^9, 3.678131597879449*^9}}],
Cell["\<\
f(x) is a Gaussian distribution
\
\>", "Text",
CellChangeTimes->{{3.6781316383597918`*^9, 3.678131648591998*^9}, {
3.678131715938249*^9, 3.6781317328027287`*^9}, {3.678131896650309*^9,
3.678131911087397*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"f", "[", "x_", "]"}], "=",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"x", "^", "2"}]}], "/", "1"}], "]"}], "/",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "Pi"}], ")"}]}]}]], "Input",
CellChangeTimes->{{3.678131231694248*^9, 3.678131309758713*^9}}],
Cell[BoxData[
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
SuperscriptBox["x", "2"]}]],
RowBox[{
SqrtBox["2"], " ", "\[Pi]"}]]], "Output",
CellChangeTimes->{3.678131251148971*^9, 3.6781313107179193`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"f", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"ImageSize", "\[Rule]", "imgsize"}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Gaussian Distribution\>\""}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<x\>\"", ",", "\"\<Probability Density\>\""}], "}"}]}]}],
"]"}]], "Input",
CellChangeTimes->{{3.6781313131217613`*^9, 3.678131328318715*^9}, {
3.678131737004483*^9, 3.678131794842475*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw12Hc4ll/cAHBbKaWsigpZpWgYqfT1kxWVhjIKRREle+9NMjOys7coq8Qh
JM9zI3skREOIrCfP4xnv/V7X+/51X5/rPvc453y/33OuI2pud/0BCxMT0w1m
Jqb/vcqCwByDwUDOls3V9dP2oG8jFU6mMBDYCL6l/LMHz8TTkqvrDMTFZ39I
n9sBOuaNzX/OM5Dnblnfy6cd4O6LrDFsmIH0r3Wl3olxgLhlaWLKKwZipTB4
GP85wlru2bJTZgxkebjPf+GtE+zruaRzzJiB1h6LfFfvcwJVisms5E0GauAy
eVA35wRRV/3F9+kyUNHVMaF5IWeQpLWlMykxUImhaH+MnzMY3LoS1bWDgUwb
u+9P67rAuy33nlg10dE2pZS7V8iu0DV5a2Stno4+NanWPhF0g6naS2qBb+hI
YvKDTJWCG3A8OC2QUURH0jzMy+mObnC9ZWdTXzwd1U2kqPEuusG8RxP3eSs6
4nkxKZ007w7C80LlfDx0NLX9gncvsxfIfdglmMNFR8T4OktHcS9QS+EMkGOn
o69Hm+8ra3nBQ61VfR0KDdna7jlwJsoLanIJVL/vNFRjTd/HJeQNV+54XJqv
pyHdcj9B5vM+4Nc1NN9yj4ZauS0W5HP8YGokqLn0Dg1x/o0YVOzwA7XvxxMT
DWio68+uJJMFP+DYfHre+jINnfOu5IgS8odn0hDHo0xDPsG0VWkrf0gNKlQ0
46GhD/NirPPMAVCt7B5AbaKi/hGFsU2NQPidv1dQSZiK3H43tPpuC4Fu82nX
M4JUlE9aDEkUC4Hqg6VDKrupyMZO26dFOQR8U84lqW+hIiuP2+pGD0Ngd5QZ
//W1TcQ8KtMa8TEEzjjn89pimyhmazvHZmgoPFU7wZPrvYm4+uRuBe0JhyOT
2lt3fqWgXXsaMw0DIoGqRZIvGKYg/bIp5eyXkdBdmXtXpY+CJEZKd3E2R4Jj
IL3uUQcFGfsnfjjCiIS3EtWWn6ooSDDPX3nA9xloPz7YFhBKQaOSl2goKAqs
yOu+a3IUdDHu+Ra/vBjI481dGw0ko8MSTN++isVDWyVnZJcPGb1DZlPiCvHw
4/Jj0RZ3MmLaYV7oqRUPkuEKV4qekNGBu/El1x/HQxG1o9DVmIwyS08Z1dTG
Q9mPBWPek2TkLRS5pHvlOVTXKbZc+raBOotG7FbCE6D1NiEKwQZSIQ3MtRxL
hs95vH81z2wgVMk036uRDBN/7lzvlt9ANmsH7dZNkmHDb0ng6+ENdP31vKRb
dDLI5vG9pPBuoB6Z9MuWf5MhdcH0tcLsP9Sjwy+3WfcC7H1Wh0pj/6ESIfON
s7dSQThLWOTFNxKKbWV9vfA5A8pTAriVx0lIwF1Y6MWfDDif8JMyOkRCndpr
eoZcmWAWUTkohJGQzv6+04LqmZDjpB6ZVUtCc/VnO2PqM0Fa+zGpIJKElkad
vzjkZ4H8cgNWo0BCZu6cf553vATdC7c9+iPW0WEbxcHh3hw4uGnpf/jiGuqv
HmedEyyEYxUZ/o5/VpCBx6fl03ZlMOWcLTtUtIwycyleDVxVYJ0el5tu8xcd
4ygSahWqBkNfo0NlYouoN5+sFPm+DqTnD9/Wz5xHBx3b8sxvN8CjK1dDpmdm
UdVq0Ec2NwTGTnoqioo/EcsKb10ssQWeo9mrqHYGHTHqEBCtbQVgGbkly/wN
mb88HbFa3w42Ix/s81fH0bSu5tVAzw44lxKw5537MOIYC/uoKNcJl41jkuUt
hhFLi9JvG4VOMBXKEHh1eRgJXJGfSD3bCX4Z9Xx5YsNIfqJDblGrEz5kL/FE
Y0MIFKs5zO92glaJyVZzkSE07kKS94rthOsNypStnwbQKv+1p0Z/OsHCW8sj
+PUA6slQrmZa7QRnlZsb9PQBVDbDfCZ3oxMSkT1p1WEADbOTdcZYCTDSWrjy
VWgAvUFeB3n2EcAE45+vsutHbtHlgckaBHj4dfmLkWAfOic1pkB7QYA3duPs
mqx9aP9g/cvXGQSgM3fInVzqRTv+LOZY5BAgQTI9iKujF40vz5jXlxKg2U5T
psG1F+3XoYYdbSLAHpY0T+Ghz6jD4LGkyjQBYi+Hn2w63IPmVawkFyWJIOlo
EprE3INU/7sTt0uGCO+TTo49Ge1GUwps6sfliDA7OR5wMKIbMRT43cyUiKDq
eKLXf7YLPfM37Q/WIsLfpDG7C4UYKuBrf/Dbkgh6U0fLP4kT0EWShj9XDhEu
3Ze6C+ROxJ72wn4inwg6s6K8tV2d6EORZGBZMRHU/wp45Lp2In+m13TFKiKc
ZmLW8P30Cf2QCxRgbyaCmMjg+KnHHYg17Vpi0DgRDub1xJSodiBR2Su2G5NE
EJYmqInyd6BDvCfAaoYIgsdR0Y6mj4iVbtxxco4I21WLnX/v/IgaclakA/4R
Yd3MZ3vWmzY0dK3xLJkHg5UZN8Qf3oYsO7fkbufD4K+Vo+OzO21oNaZzaq8g
BnN2ViMe7G3o1Q/jYdH9GEz4XcvTN2hFqX52br+kMfiUJXGOa7MFcQ5bfdQC
DBRR2vBccBMy46+M07PCYN92tt+Zp5qQ3aMsIydrDGiGjynXpxuRasTdmLhH
GLStnNvfAI2IRVgLGu0wuCE5YR5JaUBTCT+jet0wsI8SWZSxf4v+/NT5shCK
gf5YOGPywFvER5JZqg3HQElqmSehqx49/7fX1OspBvTmllPUI/XIZfeU9moU
Bs/WzD2wH7XoiY2UQlYCBsW389lsb1ejPye1nv18id8v4hYQ5apG1f/1jtzM
wb+37iI1WP8GkR5S7VEuBqdjNHVUBN6gay29/gEFGHz88CuGu7cKJR3y5Gwp
xaBk59XsFr8qVF9ESmEpxyDqTv1rF9kq5FWR53C+Av9fUvjg18hKFBub+Sev
En/+hr7inagKpJe/je1YDd7+j7hR21w5Ehahl6rW4u3D1r2OapejbN3o51fq
MJh5l9RCZSlDdncYB4zeYsAkNnopw70YaXTLCBxuxKCjodiOfagIHebaLN7R
hEH0Tc9421NFqO1mlfsibuEIoRGVxQLU+fZtW3ozBsp/TSwmLPLQr0GdrdWt
GDx+l/fbrS0XX2+axqzaMMgMnrfbJZGLjvN9ERZox4B1r4e3+s9sJCvkvXzv
Iz6/M4hlQjMbic1AEAP3w3KOCLfCl2jg1ZHg5A4MUoKkZW72ZiJJFcG+2k/4
fAjWKoXHZ6AsNscD5zsxMC+7oN5wIx3JTOaPINxHB01NRIdSEPXxk8TXBAzi
rBes9ZNfIHZO1+RDRAxINA/XMMNkJBV4jiMGd7NkYsyfsQQkFbbz8E0MA4kG
sXSR9Ofo9FTR+CvcT/Uqi26YxCOlt/uobF0YLM2o1IQeiEPHEk6F6eMu/JsU
5IRikNqJdp9M3PZ7X6eP/heFlqLzJqdxn1HrqoG2p0h4rrhMtBsDtkez3fma
4Ui/qfK7Me7u56yz2zpD0ER7clg07hfvDzA76gahH2TVxPe4zX8o7xvp8kdx
8XHcP3AbCJdYer/0RqKcjn85e/B8sp16oZ3vhhjc3SoSuH2RAJGvxBF9TU9Y
P4dbTCyV0mLyCL2brRPUw32xncPM2Ooe2nxwLO827ubsLm5i62Vk8+lPqjlu
7VxGc4GMPKixrm9a4A7OsfxV/88QlC+qdZjhFqrQ3KnuaAku20eoN3F7stsO
3pS3hzh6Q7om7p9vFHMj5FwgiedfwQncN8yZHBqPeALJMVFI8H+/x0M4vyzh
B66JBRQS3p+kyYuh8TyBcERKRb0XN1Yra3s0OhhMBew28nGzRPPqf9wWBgGx
NwVdcJ9+sHHmbkQEbGfhzj6P2+7cV1EKxzOwFqhJZMFdwPthS0JwNHTX2a83
4+P/xKX/n0BALEjutGz2wJ13qX6ikh4Pww0FL8bw+YX6I30+KgmwPe1KQSDu
sUMZ7TreiZB04fdBCdw8mwFl38nJMFPeb2CEx0up5VpW1ekUkJpNEZjH40uz
z/K5r1sqaI6Dmhtun2Jdzz3r6SAQdPabLx6Pe/ibbH+cyoT6RNGbFDx+q/2P
33vtmAUxoluU7HGvl3KJS268BG7yPk1dPN5lgpa4ml1y4eLvudQmPH/unOXd
Ui6WB/5JNqp0PL+erSqyp/bkwaHqnbeVcC9a+DKcDhfAeuHicmILBq/Vudek
vhaBM+VfDRuerzPU48t8T4tByc6bjwfPb74a/UVmpRIYoU8v8L3HwEUiffZL
bCko6W7dse0dPr4cMl9j1CtgiD9ZohivJ9ZNV8a8lytAHP229K/GINXVcdg6
8xVs+P6TuvYGj7fV8VlR70rQ7wk+OonXo0kL8ZnNwSpY8xE1KMfrWY76m+FX
EdXAv7WQvhuvj+9ENG5JTlWDdZFBQWAmBv3UoYF0xRowvtY6Pp+O50cNpTdi
pgZkmsUpJSkYPJBQwyxU6oBf3FFgPB4DaY7eZsHlt+DP7D7BFYyB6rQ5RGu9
gwARFRpvIAZGTWuNbJnvQNZXoEnAH89f1z0NyzoN4OjhKLPVG4OFn2Y1xLz3
oCBb8yXbCYNXHYvFfoYIrDDX4dx7+Hpkyu0jV4wgOXxBz94Mgx0kmauTZATL
LrbXlEzwehUv75V1uRn48vvWqg0xSGh2EGUsNsOtpoLpJ3oYXNu/YNt04gPE
KGTETpzFgDA0xaFS1wZROzwi6vD10VzM/m/CZBts+bT8e5gbA7ItY3SBsx3a
tWxYV7nw/rEfKE83bIc/9uIP97JjEHbq9g0quR0E6L+kpcj4+h47mNVwrgPI
1nm7taeI0HiRcPrMh07wHqt3LSshwqKCfOsqvo/SVRd7+6WACAfEMi+X7yVA
uMyuney5RPClOJiLOBAgyekfQyMN33+U7n3GIUKEvGom1YBIIrRtt57s88Hr
5jJ/0qQNEQg9nKGPlHsgKtRJTU+CCPMlOdZXDPvg9bZHN3IjCEAae8jSbtsH
0qFPakKDCcC0TS7tbFAfyMaW7X/gRwCBRw2YdEUfoC9L3LwuBFCTGZBjZesH
W9WezlN3CfCilJ1U96ofrL6GpUQqEEC97GGgKOcgdMgEO5eNd0JGuWzaWs0w
lFlMf/bY3wnv74XyH68bh81ejbnQ6A7w5EsZ1Nv9DXg9yhYSytoB+zyg3pc6
AxnFr7X0iK3gQFSSjBH4CT1xz58zZlogr0ed3/LTLDzamCrny0bwrKyuiPPS
PPhxqzQeHWwA5ucDF1vZFyERmLpp3+tAsLi0I0/7L5z9JqfZ4lQNQ4X+h9jD
l2FJ9liRjmEV3C49Euo4vQJ7RHbqxmWUwbk0zrPtEmtQkliv8Di1EGZi3pLE
g9dhbClcanwmB6oP+c2LjpOA9YBsC+9iBtSwpzlLfCPBQMW3Fb3+DKj9VUuT
/kmCHQshKpn1GVBXurjz+F8SWLyu4HAIyoB3p0zlz7P9gxCnNx8X92YAuqDi
Y3z0Hyiyxn7V0EkHgsXmjufe/yBfnNP4dH0qTOW6nWTbvwF8/Gb93R3JsDZa
seQktgF5+w5U+bxKhi08P8tmpDYgQmGVDMnJIOetL9V6cgPcG7eX0C2TwVf/
hHCg9gZUDkOMBWcyCLPPszM5b0AhS/nbVt0kMLI0Hd0kbMDOqvz9WdMJ0Cet
4b/qTobqQpp9q2Y8JB9p7+PwJYOxjO7xm/LxcOeohsS+IDLEWbpMrovGwy85
DYJqFBnCepMXLWhxQFXU4IvOJoNQg+HGcnUcSGhoFEkTyHDK4dZGt2QcuN/T
+GwiRAGPIvMnt/hj4WCqhsinRgpYlNQOdis9g7tzxb9aPlAgW69UInTfM8g5
s+NVQwcFfr9PsrtFiwTJL0Mqr3opoHI/t/a/1kiQFX54O+kHBWCE5vrf1Ug4
l/k06T73JoyxqC6NPHkKxjk925lNNiFxb7kjc1M4pK+cGqDc2wQOnunihtxw
mFB7kbZmuQn7bsxxRkWEg/nM3SOz9puQtNWH7nwzHKzFV7R6gjfBeJ+RquFi
GLgX8AVllG0CfVugk5l4GCSVGJGVqZvw8BAib8sOgfkro2tZzFQA54NGcWEh
oLpq+Jedkwq3CnZ9kXsSAnNnDX/17qLCWYI2ve5sCJzvujVoLUWF2vPwaWU4
GH4s3ahKuU4FFpneEhb+YJBXuGJNLqKCp/SBgh3ZgRAx2nXfrIIK7LddMxOf
BsKEz+W77W+ocEnlvN8p50AI/3jJIK6JCjmPjle/0QqEcQNdjcMDVGhaM2Vt
WwqAYE9tUSMGFVKwTE5+9QDoR2qj9TdpkDGf1sFE8YMxuW02H4xp4BhxKUR6
0A+msvopRDMaaPMz2TlX+sGC333hSWsavLn6zsjdyg84VEPN2H1poBX5JvHY
sC8oN3f+uFZAg9aw8t2KjT6Q1Xx1ZY5Eg+/ytslsuV5QcHxv0NomDfJnehZ9
Ar2g7OU3XjoTHZ5KKovsMfeCen9HhV3b6PDDpKy4QtQL+lQT3JUO0kHt2Z2Q
ezmewN4yTA/SooOBNyJ1FHvAoxbTbftf0EFC5BrxZ48bmGeNJr3PoMNn0c3D
G6/cwNhHX+xOLh0moivDZWPdQFtZRzmtgg4o+XbT1mtuIF6lYLW3nQ6mE08N
XAdcYfzl9lb+FTpoafZ/55p2gUv+7zx3XGIAT9QOkzOCznDBVIGj4hoDHmsc
1y3ddIIz5yrjLhswIL95fr/KlBNIb+QXPTNngHB5/cqHYidgs48b4vJggJB9
+uyN807QaPbwJGcBA0RlbN7b2TpCtcpMY0EpAxIMBHSmbjhCmZDpRc0qBgwt
qxDtzjhC6vCNuyHvGXBI2VR2ntMRXPUgmrWfAepL76Wv5jmA7bF3e3NHGHBZ
P4mlJtIB7m9TyFebwN+nmTuh5OQA1zuOvA/4zQCvGEnJZDUHuJifryW6xIC0
Awq3nI44gGqQSH/zGgO+vSrcZbvbAZTupZnepeD9U9s8E0yxh/87H4X/Px/9
H5Kp82Y=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Probability Density\"", TraditionalForm], None}, {
FormBox["\"x\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->600,
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotLabel->FormBox["\"Gaussian Distribution\"", TraditionalForm],
PlotRange->{{-2, 2}, {0., 0.2250790577181992}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.67813131995929*^9, 3.678131328680786*^9}, {
3.678131761409513*^9, 3.678131795324728*^9}}]
}, Open ]],
Cell["\<\
g(x) is a uniform distribution
\
\>", "Text",
CellChangeTimes->{{3.678131902649313*^9, 3.678131907447702*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"g", "[", "x_", "]"}], ":=",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{
RowBox[{"-", "1"}], "<", "x", "<", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"x", ">=", "1"}], "||",
RowBox[{"x", "\[LessEqual]",
RowBox[{"-", "1"}]}]}]}], "}"}]}], "}"}], "]"}]}]], "Input",
CellChangeTimes->{{3.6781313325172243`*^9, 3.678131397265728*^9}, {
3.678131800251368*^9, 3.678131807509596*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"g", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Uniform Distribution\>\""}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<x\>\"", ",", "\"\<Probability Density\>\""}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "imgsize"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6781313945309343`*^9, 3.678131407737515*^9}, {
3.678131810393841*^9, 3.678131850634075*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxTTMoPSmViYGDQBmIQrWcv9ur////7GaAgJEu94+cvBL9qqoXa568I/vHX
UUnPXiP4CTPm3zpzHcGf+FHj9Mz1CP6XxdZrjOMR/F0ciXnp+/7B+fVnr70+
mPgXzn+5VFLcXOYPnK9134OT/+4vOH+J8OIvN5t+wvmHo0/17rf/AefLzJdR
mPHwG5zv7RxdebnzK5wv/zutQdPzC5yvu25uQ9HbT3D+g5KFetdWfITz60xL
Pe4uRvBlvnkkPZmH4EeUf5j6aQqCf7HS/i9fI4J/qO7uafdIBH9Jh2TmTk4E
38nzbdMBFgT/AefBOcf/f0DY151x4epXBH9q73bzTw8R/LZJoWzauxD8zDkT
F8/JQvC/cHh1mqci+A2lTPmX4hH8aX7FVhyhCP4hhtCLxfYIvm8u73Y+KwT/
xs2jc1aaIPjvNpll3NdE8Cvl3/tWqSD4LD3LjUXlEXypVIn/XiII/tKLF548
5UPwDew6TzVwIvgHT2tWWLIi+AD42M2P
"]], LineBox[CompressedData["
1:eJxTTMoPSmViYGBQBWIQXZuxhr/36/v9DGDwwX7Hg6uHbjxH8J9M2h7pcgnB
t/le1S69HMGfGm239VM1gv/tjXeO//l3cH5EXaTyGiUE/8AWR/uGB2/gfI3X
mtEh817D+dl+Aa2PHr+A86OK/W3NzJ7B+ZP3vwjYv+0xnG/PdCNMj/EhnJ91
41DB0s93EO6d2Sixq+I6nJ9x9+PtSPFLcL7/A521J1ROwflm+2dff9WyD863
/BCbfC95CZyv3fye60DpYnsYf/3xdyvrI/bD+Xs9T1lYHToJ579etSjTL+IS
nD93rd7sL1uvw/l7EttEDbbfgfOrRGZe9Rd6COefuXDF5dKsx3B+4WlztX6x
Z3D+kvMuomknXsD5PWu2r2D3eQ3nH5N3q3y64g2czzj5iudh1ncI851Mby9Z
geDP+DQ1p837PZxf5+Vm+n0Ogp+86Nvf9HcIPjT9wPkAjXvVvw==
"]],
LineBox[CompressedData["
1:eJxFx1koA3AAx/HlLJOkEHKMYSaKLA1rImwiGZKjYQgh8uCKzJkkR7K0EZm5
JiEPaHMkR+TFylFa4sWVm8w1lP6/X3379aGJSgS5BhQKxe+3v1/b9apkG99z
Kf+byuqnV5nA3nmefl1UeLJojjNmCTPKONHL1jC9NiH7xhkebtCWGLrDtNaC
Gnsm7NRT18sLgG0nlFsjPNjqy54/HAubx7ftDApgA13+njQdvuV5aLpK4c2L
IW1NH1zOkLwkXsAHY2I349YH4jQls6Xs7JE4RGYavOH+THzeufhKb3ohnner
u6advBKfyiv8jRzfiPcZEeKnSh2xszTCZVv9TiyZTNGxPz+INSthxwtJX8SF
a0KqY983sWjwWKIagFNrE13T5TCPHc2WTcP0WVae3QZ8MmS+bv0Ix4iXqi1i
9MThQpbJdDwcFDLTHZsMM94U4+0i2Ki0+8CsClZn5PubjsLznHP1qBKechDy
I2dh6WFCZrMKLo/jdhhq4GKfJTv5EZxDZSnCtLBgi6mqv4T5CkUU7Q4ObXTR
rD7DgVkyYeY77Mu1udLr4R9KvMZY
"]]}, {}}, {{}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Probability Density\"", TraditionalForm], None}, {
FormBox["\"x\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->600,
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotLabel->FormBox["\"Uniform Distribution\"", TraditionalForm],
PlotRange->{{-2, 2}, {0., 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.678131408329247*^9, {3.67813183262092*^9, 3.6781318510434723`*^9}}]
}, Open ]],
Cell["\<\
Now define the probability density of the two inependent variables
h(x,y)=f(x) g(y)
\
\>", "Text",
CellChangeTimes->{{3.678131857984569*^9, 3.678131890504114*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"h", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"f", "[", "x", "]"}], "*",
RowBox[{"g", "[", "y", "]"}]}]}]], "Input",
CellChangeTimes->{{3.678131419416675*^9, 3.6781314330805798`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"h", "[",
RowBox[{"x", ",", "y"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<x\>\"", ",", "\"\<y\>\"", ",", "\"\<P\>\""}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "imgsize"}], ",",
RowBox[{
"PlotLabel", "\[Rule]",
"\"\<Distribution of Two Independent Variables\>\""}]}], "]"}]], "Input",
CellChangeTimes->{{3.678131435789448*^9, 3.678131501447753*^9}, {
3.678131917210565*^9, 3.678131954695139*^9}}],
Cell[BoxData[
Graphics3DBox[GraphicsComplex3DBox[CompressedData["
1:eJyNnXu8zVX6x00kUU13FUW5dPslJZIxraRCuVXTZMp05ajkUmhMpaJG0tVB
uaUi2UIZYdDO9zgkt8iWE+fIZWuOkDi74xr57a/9fNaxP8/3eTX+Oa/zbvV8
n/VZz1rrWev7Xetc+FCPOzofV65cuctPLFeufPrnhd+3+ezIkSMBfpaTfzm9
p42c1e1XxT+ucsYL3Yr2Kv7zuD45tVulFO981M4Oo3zS4AnF8c8o7wz7ios/
RvmU4lJfxUUfxeV3iwfQlXVmDp2ZQ2fm0Dm6fNLgCcXZL9bZsK84dDb8Vxw6
G/ooDp0NHkA/rg9z/M4cOjOHztHlkwZPKM7PZ50N+4pDZ8N/xaGzoY/i0Nng
AXRinZnj/2eO35lD5+jySYMnFOfnsM6GfcWhs+G/4tDZ0Edx6GzwAHp8eUr5
MXOSPX3cg1caMerLi3IG+XYC/1elH+5cW/Kutws+pmH3rZWv/dThd/w8/2Dd
Hm785w46g++/f+XkLxcvdNAZvF6Tjpuavr7UcbtdmDPv0k4rl6O84/LQme1D
52h/Uo79h85cX+jM+kBn1jM7npNKZ3DWGZx1BmedwVln/GSdwVlnP3+Szlw+
O56TSudof1KO/c+O56TSmfXJjuekoXPC0Dlh6JwwdE4YOicMnROGzglD54Sh
c8LQOWHozP6kHPufrXPC0Dlh6JxQOqMerDM46wzOOoOzzuCsMzjrDM46+/GO
dOby0JntQ+dof1Kes85cX+jM+kBn1pPi2Rnx7Ix4dkY8OyOenRHPzohnZ8Sz
M+LZGfHsjHh2Rjw7I56dEc/OiGdnjM+GzklD56Shc9LQOWnonDR0Tho6Jw2d
k4bOSUNn9sePz4bOSUPnpKFzUumM5xv5htIZ3Mg3lM7gRr6hdAY38g2lM5en
fEPpHO2PzzeUzlxfyjeUzqwn5c++PpQ/e075M8VZSnHKn1XeEM0TitNz1Dhi
2Fec8mf2X3HKn1kfxSl/Zh7weE/rQaUzc+jMnNaDSudonlCc6806G/YVp/Wg
0tmor+K0HlQ6Gzzg+ZP2N5TOzKEzc9rfUDpH84TiXD/W2bCvOO1vKJ2N+ipO
+xtKZ4MHnI/Qfp3SmTl0Zk77dXq9EckTinM9WGfDvuK0X6d0NuqrOO3XKZ2Z
L7zk+bpFsw4H+Mn6M5ffnVFe8ZpH+a6g9d03/dIyt5T2DYoVz+hQpHhGh3yL
O8OO4vJciwf4Of71y0cdum2+gz/g19Zp1qDowFcO/oBvCEqq5DTBvJzvmMMf
tgN/+Lmim+f9Z61ZP+DqmeB4rgMn/53hvzP8d4b/zvDfGf7751L7UpwXKU7t
y9wZdhSn9vUcejKn+FfjD3OKf8Wt/sXrVCqv+guvR6Enc+jJHHoa3Nj3KzL2
94ot7vfHON7AOd7AOd6Ywx+2A3/4uWhfcO4vGF+5v4Ab/qv+Am74r/oL2yH/
VX+JzieLjDw23+JGXlpk5J/FikNP5hTPan7hfpHpbz8E+Uf5zmBSyw8fnXPK
Aqlvgefn7hza5YqOS+R50z3vsHHZoKJJ0HOZA9/08mvnP/TSMmnfjZ7/65Jh
h/f0WOQq5W0+Kbf2Ns9P7f7f7+udGTj4E7Q8pWZu7RLSoUBx+MMc/jCHP8zh
j8Fh3/cv8jPg8lwvea4qT/WicWZjwLpJvVR50oHGjWUBt4uUd0Z5xVGe2138
V+VJZ66v47gSPVV5ahfW33Hcyu+er88dfOjAnbP97/jv4NRejuMQHPYpHjiu
fHm0F/Ujh/pSPHDc+vLUXp5Tv7P6hTPKO8O+in9qL/bfGfVVdqi9WE9n6K/s
pAYUP96t6LcAP4k75mj36PjcpfJMGletPNnyh7ljjvpwvZBnsP/w2/BfzS94
Huct0NfS05ovjHqpfInK03iyQ60L0C7nH14/ZVa3XxSPzouSyg76KdsBj7aT
MNY7BcoOONvJfg6vd6YrO+CGP8b6aJljO+CGPkY8b1R2wKPzzB3KDvop2wFn
O9Tv1Pqd+xG1o+LWPmH0+qJA2aF2VPsD0eua6coOtaPaT4heB/l2VNzat4xe
H21Udqgd1X4F26F2VNzat7TGNx43aP1r5fmeIz4QLw2Ln9pZr2VZXmJwlQ9Q
ecd2oudrv3535Kfj9QjlFT5/IP/9c5EnGP1FjQPIB4x+aqwrl6ny4NHjw3TV
f8Gj148Fqjw4l8d8bYzD1jij+i/ppvIri0fH/zJVnvRR+ZLR3411WYEqT/qo
/McY31R5xBOXBzfKG+NnqRoH8P8zRzwbzw04r8Y8ET0PphRHf4yOq2LTf/TT
VXWrN+pz6kfeb/RTcPz/0GmJO6PaVw987Pcd/HPk/Rrqg7ijeimdYf93dA6Y
c/zj/49eHxWLPwccc37fgfnxmX9Pvq5o1h6K8yJlB/Mvc9hZ1/npRUeO7FN2
+Lnod9Hldxjr06TBE4pzvFB5Y32aNHjKmi/MfmfNL9a6wGrH6PV1kaFDvsWN
dXqRFT/WOtp4n1tsrEOLjPwt3+JqfUF+8nON/Zldhp0dZj4ZzROKU3uq/M2w
b/nze/5b/V2Nw4Ydo112KPvo/1y+5Gie9nMQG114qGXubir/X8UzcbJO8cxz
P1c8046LHPNMP/pe8cx4sVVx+d3ieK4jO4rLcxUXPxWXejnmooPiopviorNV
Xj03Ew9bFCf9aXz+1vJf8UxcjbN0UH5m4m2l4tSOlCdsVpza1/NG57W6s3ar
7RZXcUX60Di8WXHSh8bnlYqTPsxVHJI+/FzFSR+ul+KkD3PVjqQDt6MVD0p/
8p/jU/FhK6puapn7k6F/qZofZVxS8xryP+Y0DvjnFuxp1rxoVonieB7bkfLK
T/Hf6r9KN6ov9es9ahwmP1UeGL0vWmrZCfCTdY7ePylV8zuNnzwOK07jJ4/z
1ryg6kvjJ887Bt+j5juKE6vdOU6M8fYXte7A7xy3FdtPeqVbUUrpT+say75q
X+RZxvrFc8QV1iV/mdDtkYU3jXPI12FnzTldi77tP9R//wSO7wBhB3kf28Fz
YQd5PMoXX9z0vi23jvDfW56Q1/X68reUtRf2hQb9d+CLB3rt8t97wx8uj+9e
DDtWedjn7xjhD81re3156AB/mMMfw77nqNf22V2Kq/U6HHQ7fEGD/n13BSd+
veKsKnWed/XaL12e2LQ/eFz4T5XXtFo3eJh7fev/ffZK29JgrPA2bb84oXmF
iW7kiLdzRh087FB+y+TEwIavPuMeeKvKmND+voHndQqal9VrwsXdB4T2mffo
cNc7tz9ywDGvPT81LbTPvM7xxU/2aLE7GH1SXmnNJ3a5ksZdmhY/NcMVNh4y
vfVjWz3f1/WqibO+z3N5K6b81vvV9Z7fP7xK+dSYr9yUu7vX/+ClhcEY4Zee
+/n3t5653DX4+dkxE0/Ocyhf4yf3U6uOy12l82Zcs79doefXzx4yvctfFrtn
Nwxr80brYs9T1zR+vf3c+a7k05UvhL+Dj+uy7++Pl8x036TeWRDGd4HEW+/+
lXLC9/Izbpxb8z/pdQr4lEE/nBC+xx/kXuldJ71OAa99+86DnZssd3dWfKhD
rfQ6BXziFXurh98DnPvRR6eH6xTwJvPfvS+081LtN5qG6xTwb0e2XRE+t3TP
4h5hng9+XJtWjV68eqa7aWFib5i3C3dLaz70Yrh/SP47w39n+O8M/53hvzP8
d/Af/b9Vy/qTGx3Tj3bJeiqaJxTHP6O8M+wrjnUN881VKy5Kx0lw17YbDqTj
IahaoUn9ME7qXfN5x/Jrk8FzT5fbF/LxC87fV+++hS7x2tt1DrQr9OXfmn9z
lzDeun1Z7s5kzurgeSlfMGphvyUtlrolq5s9N+nkPF9+46B/rgrjdufF0xdv
KBri7W9bdMueOl8vd2c+Oantey8tdCg/YteYI2H893xh+z9zLl/lUL78OYUT
mqxc6krvXXpyuh/58iccuuOOsB99elr9njfP3ezgz8j7p2xqevWXrs+RGk3S
/dH9Rcr3vPCcCv9J98fRL4zf+N2G7d7Ou8P6fTb/H3FXd8tj49Pc+3lX36dO
zk9zsR+wffEzYD+lvo7rK7o51k30d6z/mx/UWz780A4n40MwquvlfeZ/M9eN
P37vm2mO57rWE3p+HXLy38F/al8H+1Qvh3pR+zr4SfV1VF/PUV/SwXNqX2+H
9PHPpfb1fpJuvl6ig2MdBpzdeFCYb2CcGVdlS/vw+//RfSbduO7WUue+aTY4
Pa77/kLjT4Dx56Vyrz82e12pWx1sDcv7efaJR6Y2Cv9/xFVhbq114bxQ8dIe
J878Q8rzu8ZsHh80nQYeMM85MOAflQpKg7ldnrw6Pa+5BsdNz19Ua4LbJfkS
9+s2hXfsmJG2A326nzzpx9DOvuxx1f3WOjOuSvw4jh+x49iO909+FpR8/HnX
kpkchwHszN7Sf1WYj+G5V3+amBrmY7VGVdky9K2U21f9vKPzUZMzCvZ3PTTV
tfj3i+cMS/Pth2a8eqyeNK56TuMq8YTiNK5yeWfYV7zVnFEvhuuBT1pkc8kT
kFd4LnmF4pKHOOaStygueQ7yIoc8J3nlgdahffCPH9734NAXc5FHIS9yyKMk
73KSdznkXWcOWX44jAfWf9WJI3aG8c/17dj473PD+Zf50q9vOiWcf5nPvGts
u3D+ZV53d+t+4fzL/A/VqtcJ51/mBzcsvjmcf3/HH98vyB/PyR/PyR/PyR/P
yR/Pu08r/8+w3zEvP7zw1zD++5ee8Nqx4wzp7Dnl7er8LDjy8KofHFwdzvus
D+Xn3g6tR1T+z5zWHWW817Cdh4fudaeOvvCVY+v1TOy0Qxc3/zmY+UbnDnWP
8afSdwWLh1/w32AW8YuqNL78hNLvVPkV7594xquTZynet09O8xebLnFsZ+L3
l1TK2bpB8dtvaHftzSN+dGxnU6WbZ3bdsFvxOqtyZqR50GRR87/VPaa+Bd/k
NkzbUXzOb59WSD9X8VH/6d007afig6rvrJmul2N+2vZp9dI6KP78LUOXpnVT
PFV1xeG0zoqTzp7fO3Z19UPH/xA0mvxtFif9PV848qrVq/PXqPLULp4vmbWx
8zNfT1blqb08v7RDr1+2jf3acXlqR8/7T6w6rfVrm1R5al/P9/e9Y8uGadtU
eeHw07c76RPQcxUnfTyXeilO+jB3hh3F5bmKkz5cL8Xnu97JUB+Of9KH9Vec
6svxoPQn/zk+FU/0OKX9G5ftVLrduLTiWa1yS4NNQfa+x9vnfrI9PS4FMt56
Xu3ud89K5xvBvHErBh3Lf8geB/xzr5twy6uzHytR/owZ9N3gNFfjmPipytN4
aNXLGlcDeq4a30iHsv2K7HHMl6dxzHMaxzynccxzGsc8p3HMcxrHrPby/tf/
U+n+9LwZ8Pwi7aJ0o/wzQP7Z+8mHK/6W1nPuuuJMHnvaq51O+cd77snWNXYM
qX3Al6+1Y1HHNf2H+vPLmDf5/DI4n18G5/PLXB7vQ9n+G/c2/D6cx+FP6oIr
q4TfV9D+UmDsLwXG/lJg7C8Fxv5SYOwvBdhf2pW9vxRMkP0lWi84rBeQz2M/
EN+N0L6Ew74E6e/Pd9O+hMO+BLWLPydO+xIO+xLUXv68Oe1LOOxLUDt6+7Qv
4bAvQe3r/ad9CYd9iXYzj+/xSttStyOz7gumnDKq3E0VJmLd6njdSvuQAfYh
e8l+KfL/qbJfiv12+EPn9x23S6/s9axbI+tZakf//U/fHn3vDdfRGx776Oj6
8aNYtUrzTvPPdfzcvS0bNQvLb6N1B+1Lq/1t3ien/XM+j6/y1a55V7UL/eP1
zuPZeTutB1NqP61y/tWbwn3m7X9a+PCx67ULH6o5JFyXyfo9KFfUv0tuel32
3dIvPg7XceCzr7xsZYP0Oq7934YvCvel2Q7tAwTYByg5f/ygcH0H3v/Rkr8V
ptd3eXXr3RnuY7OdyQNvGBeu+1D+172X/XZSet33zzeXPR7ubxvl/f4Dyot9
+Ol1EDuKi5/eDvy85Kt7G6Tr5dehA+c0nvpVul6ig2M7oif8d9BT9FflRWdf
HjrT+xRfnvZzPMd7xLqPvjcpNx1v+B4V75PA8Z3bFyWHy3+W/r3Lh9dlzWt4
D4TyfC4GHOc4WtZc8E3NdsVBDtnBd2Ioz+diwHGuZNy7p/7p/LsKlZ0c+W4T
5flcDLg/57Kn4aSSqnnKDr7n5PJi37H9Xu1n1rr76YWO7eA7T/Yf32NzfS++
rf3+dgPXKzv4/pP1xPfYrP/J+x66cm6XrcoO3oNyu9/wQ9urwjzDKA/d/HfL
i6b1OJqfyc+ydVl2PPhzOme/9WG/tD+qPLW7Px/UtN/qYe0HrlflqX39uaR3
Z3zescPTC1V5akd/vun6IVf23F01z3F5ai9/junNrq+PrX5XoSpP7eLPK13/
cv8B6ThX5fHdIMqjf83qEJ85PRzfo+0HbB+cx23qX55vure46RNrkiqfpP7l
6wvO9qnfeb76zLvPmPfgamWf+p3Xf5dw9X4nuz96XuuCqitGvTJEryOy+6OP
B5ybYPvUTz2vctWwOYPrr1LrGuqnPj7B2T7137L9tG0V3vouvlnZp/7r+ws4
26d+7fkTn7sFj27eruwLV+tKip+y/aLsOPFc/Fec4sRzigfPRWfFKR48p3Zn
rtb71O78XFVe/FSc2pd1UOVFN8WpHT0v98oD28P24vEW4ye3O7WjGj+5PLVX
Wf+S8ZPLU7t4Lu2i4pD0V+Mnlyed1fjJ5UlPHj9VnNxzxYU9yx/coeO28cbx
6fwnuCHz/ovidq/Kwxf2H/R0Om8Pgh33ZO2r0LzJ54aU/zdmz6ee977lz78e
Pi6l6iXvX9R7hKZTvz7lt+NSKj/BPMLPFR1M3XjeIT19ecr32L6KE9KB/Vdx
XnpDjYJwH4PfCxD35SnfUPkJP5fyDat/lfmZnW+ovJTLU77B448qT/kGj3tK
N8o3VD6p7GfnGypvVONYdr/w+p/+ya/PhPFvrRc4TiSejbzCf0/l3+P0LDfv
9nA9UjD4nr3hun5wnc39zq06Ae/7/PdOeN/X78If4keO6PvG5Ts0db4YnMs3
/PjUb44c+UWVB+fyF8l39VwenMsXyneSXB6cy9eWuOLy4Fz+YvleN/qe+Vic
OcpH35ceizOvJt8tsx1wLn+BzI9cHpzLfyffe3N5cC5fQ85HcHlwLn9Nph1V
eXAuv1a+Y+Ty4Fz+2UwcqvLgXB5xy/fUIj6ZIw6ZI96YI66YI36YIx6YZ/7F
4szR7szRvszRjszRXszRLsyhP3PozBw683e50Dn6PH4szhz1ZQ5/mMMf5vAH
+4h7+kysOLjLQHw363nnv419p+6AkQ7tDn7O+PsfCGpMcvCT7yeHn+CjRje7
/OX9Sx3aBXzEjYN6tH9wkUO7gD//yr8e7Nwtz8F/8P3iZ7aeSeU/OPsPDv8R
t+C9K/d44qH3ZjrELXid1KW/tOme5xC34C+9neq75bpFDnELPuX5QUv6r1nq
stsxqfQBnyrloQ/4QLEPfcAvFn8Qt+B9xX/ELXh1qW92nCSDR0Wf7DhJGjon
DJ0Ths4JQ+eEoXPC0Dlh6JwwdE4YOicMnROGzglD54Shc8LQOWHonFA6o3+y
zuCsMzjrDM46g7PO4KwzOOsMzjqDs87grDM46wzOOoOzzuCsM7gRz86IZ2fE
szPi2Rnx7Ix4dkY8OyOenRHPzohnZ8SzM+LZGfHsjHh2Rjw7Y3w2dE4aOicN
nZOGzklD56Shc9LQOWnonDR0Tho6Jw2dk4bOSUPnpKFzUumM94fGPK50Bjfm
caUDuDGPO2Med5jHUS9wrpe/PzwyfsrOf1G+5Hl2/PB9OD6P8pzyKM8pj/Kc
8ijPKX9WfjKn/Nlzyp/LxsXsfFjViznlw55TPuw55cOeUz7sOeXDSjfmlA8r
3fgeZloXK92Y0zrXc1rPek7rVqVz9L3Wfh2qdGZO60qlM3NaJyqdmdO6T+nM
HDrzvUa0L6F0Zk77DEpn5rRvoHSOvtfa7w8onZnTul7pzJzW6Upn5rTuVnpy
vgY9hx89X3tIrZenPnNb+dzaZfdUQ0++vxp6rl8zvVXtVmX3zkHPX+g+OuhZ
uf55b83qpvdbuhj7J8+R/9CT/Yee7D/0ZP+hZxH5Dz3Zf+g4f/Yt42d126f0
5PwXepac/sm2lrn7lZ4nZs6DKj1rdjurftGsA0rPxkfPox9Uerb76tmnuhUd
VHpONvYf8sl/6FlI/kNP9h96sv/Qk/2Hnuw/xoH25D90Pl7OAbPOfI4Y9cV5
F65vRbIDf56Vc8/sz7D7Nnas3UrvhwyV8+j1ziqON9/6L5+3YL//7Pjahgve
H+Hzll1yrn3NcX2vWXdjzOctOcb+w3CxX+nB0udWVlrm84rqch8D50t438j5
0rNy7wXnS7uNdf0FYp/zpTZin/OlfmKf9z2uk/sSOC+6Ve6HYP/xnpP9ryz3
cHBe/Yjci8N59SI5N895NX5yXj1f7m/gvLrEWI+3Ff85r54i/nNeDf85r4b/
nFd/Kf5zXg3/Of/MF/9Z501yr0b0+mW60rm73F/COpfKPUOs8zS5h4B1flze
z7DO+Bm9Hk/Pn6RzhfEZ/1nn/eI/69xT/Ged4T/r/In4zzp3E/9Z5/8T/1nn
2uJv9PplmVq/TJB7X1jnH+XeJta5g9zrwDpvkvdarPO3cr8I67zDWI/jJ+v8
gPjPOn8o/rPO8J91/rv4zzpvEP9VPIv/rHOe3OPCOuM7AtY5T+7LYZ0fknuw
WOcKck8G6/yRvA9knVvKfS2s80/Genye+M864yfrDP9ZZ/jPOh8v/rPO8J91
vkX8Z52vlftvWOcT5DsL1hn+8vzSyViPNxT7PL9UFPs8v+Anr8dvlfeuXK/z
5L4crtdauQ+G84f5kfeSxeI7jXV3Adnx+UAmT1D2+T5A6PZwhb5n59beo547
yVgX55J96PY02YdebB+6Vad7UaBbhUxepOol+aSqVyZODqp61cjke2r9dQLd
c+jn30z+qXTobKxb25I/0KER+QMd2B/0I/YH/Wh3Jr9VuvF+LXTLI/+hm6xr
lG58fy90K8ysO5RuC+jvRGC8mpxZ16h1a+aepENK5360rwydaxrr1hPJf+jM
/kNn9h86s//QeQr5D33Zf9JT5edVDP4srROhZxu6FxT8NuLQuVOmHyl+Db3H
gP68joD+Q2kdAf0nGeuyXCpP/V2tyx42/MTPfjJ+4venJW8Hh/8nyvc7b8s4
DC7jreeoV2PJ80fKeI56daJ1DcpXk/UFytO8oNYdMi+odYf89OsOxNtkuX9p
gNwXDT6JONo9JvdfPkd8CnHSzbGehVgPkZ6Yp1hP0dmxnqKPYz13U15B+jvW
U9Zxap6VdZyaZ2Ud5+dZinM1/nSi+YXiX40/PD/6/IfmI/jTiJ6LduT7vixO
+11q3Ob3bDSeKG7tp1nfL/F3C9nvfTTHdwIcP+AcJ+Bod+gAzvH/0awgi8NP
vL/g+N+6f0UWJz9VnIMbfvr4JB1UO1rvO+4b5oaG+yd3fNhs7asnLfPxvED2
WwbKd+Pg84kjrlKyD9P841VX5D+W53mu7LfcfdGbFSp3zfP9aBLdXwf78yhv
BM8jDvucf0IHvtcOHPcd3iX+QOc8up8QfJ7B80SHl0QH8IXE0V7fkT+Zfz4f
VvMadKso+1TgD0p73S7tRfmzmu8m0T2EpKea79aSnez3EWVxTno66En6q3FM
dHOGbopzu1O7qPFQdHOGbg66Qf8cWk9Re6n+IvuHDvuH1I8c9yPpL477C/xE
v6DxVulvcR73KO9SeW8bg3Mc0nj7u+MJ2p39RHsxh87M0S4W53wS+nN5cM4n
0S5cnuZNxasbnPVH+/6v7UjzsuIVaF89+7uClKWz6hfMSWfFd1H7kv6qX7Ad
ei+gOOc/1C6K8/qa9Ffzwv+az5DOirN9ymMDnt9jBkf+YOQDincxyncx8gre
V6H83HHeMtngyCuMPEfxHCqPcYDfByE+uR+Bc7/L/m5Hz4/83gqcv4PL/s5H
54ccD+S/mnc4Dsl/xTl+yH/FG1K/IP9/dxxGv+L+hd95fQHOOtB+WsCcxzHE
ocX5vSF05vuE4Q/WgwM/7jnuvHtivj5YDzJH3DJHftLus3cuGds45uMT9wkj
387+/krryfFAegbMed4h+4pb+Srvm9H7a8X5uxp6r604/50U+g5fcd6vAy80
ON/7jXiO/nsosThzzBfMfy//eX9ixazy4GwHujHH/MIc88Lv2FHzFHOyo/p1
/b6VIzmXJ53VuBH990G8zmpe/h1/lP6sA8WzmjelXRS3dOP1F3TjdQ3s8LoA
7cL3pVsc9WI70I05dJtIduCnxXn9i/aaSPUC5/qSP6q/WHbYH7Kvxn9et6J9
ub2Iq/mC5zVqL9WP+P58i8P+qbEGtVrZ/ivOeQJ+57yCviO15kFVL2s+5Xmf
5rWA5y/sJxvznef0/i6Y/tbEdwrmjHDZ32EWKw47zCvL/vAOuScfvCJx+L3p
0xFzwn2Jv855NWv/h+OQyjuUp30ntV6W/SWH/SVqdxWfhWJ/xVMT3JP1y3Tj
+Pffr5Kf4EvmlWwM61Uh/4/nh98X4bm7xZ+v5bsj7Fu27df9r8f2F7yf+uTu
LrccG+fQM5/iHzzW/qpe4T7SpQ27Vw+/d8J+6Trqj+ADkz0rtsr9KZjYYfHU
8Lsp+DMow9144f67oIx9V1vs47nYn6km31mBf5rx3/Fzh0h+dbV8rwXeLqOD
6hfXjKw3ILwP6seKo78/dh0BPnnye0c55jU+/4vx7dD1HfNKn9jl9y1RHufE
ef9Nyqv9H75njLh/z4K4rTzko3nhczlu2U9w+MPxfN7O0/JDfzieuz6389JV
/9gVrBjQ5eowrhCHbaafdPT+ruY/HLnp0T+Xcb6nC7zB1PVH7SxufuS80A7p
HEBnPHfpllFZ56bBJx/cH9rxcU7tGKAdEW/DfprSuVmfXer7vfd+SbR45ald
/vs9xNUDX0665/Obdqt4npE/uPX9N5dx2Bfu/YR9seM57MtzfTz77w8zfvq4
Rb22PH9pxD3VsTifH4eeXB76HzfljSw94X+jPS9n1Qv+d7rswywd4H+fL746
qhuPA8/dPvGoztzfhav+LnZUf5fnqn4tfqp8qdfn67LO6VO/U/ve6Ke8X833
XVB/Ue8XpL+o9wsvjFyZZYf6qZ9fyH+V//A9ADTO+H1d8l/lqxwn5Kf1XCve
lM5sH/003mB+1jhA8anGYeY4B87fseM9HHOcZ2aOPIm5fw8XWT5p8ITi+GeU
V+cmcT7K8Mcon1Ic62HmOF9hcPW9OvRkDj2ZQ0917lP0jC6fNHhCcfwzyqvz
ptDT8Mcon1IcejKHnoZuVnmVz0Nn5tCZOfw0yisOP43nWuX9dyP8957A6e9M
eY57SBAP4HRfqOe4/xPxAM735YLzfbn+HA/dl8vlEQ9sH/EQ7U/Ksf/QmesL
nQ3dHOsGnf3+FukMzjqDs87grDM46wzOOoOzzv5cFOnM5aEz24fO0f6kHPsP
nbm+0NnQzbFu0BnzGP/9gkztYnHWH+X5nliU53ZBefp7Z748txfKo77Z6/ZY
nNsR5aEbOMpz+6J8dvsmfXlud5TPbseEL8/x4M/DZa1H8K/se35/fjvavmP7
/hxytP+O/UdcGfr48hxvhv6+PMeh0b6+PMenEW++PMetEW++PMcz8juOW3CO
T3COQ3CON3COK3COH3COE38OkuKBy6N92T7aMdqflGP/0S5cX+hv6OZYN+iM
fJl1BmedwVlncNYZnHX2511IZ3DW2Z8rJZ25PHRm+9A52p+UY/+hM9cXOhu6
OdYNOmP9wTqDs87grDM46wzOOoOzzuCssz+nSzpzeejM9qFztD8px/5DZ64v
dDZ0c6wbdOb3rdCZOXRmDp2ZQ+fo8kmDJxTHP6O8el8MnQ1/jPIpxaEzc+hs
6GaVV+8foTNz6MwcOjOHztHlkwZPKI5/Rnl13gE6G/4Y5VOKQ2fm0NnQzSof
8He80JM59GQOPaPLJw2eUBz/jPLqe2PoafhjlE8pDj2ZQ0/m0JM5zrHz/gDe
MzHH+WfmOJ/MHOd+mdeSeZc5zvsxx/k05nh/pvyU786Z41wTc5zbYY5z5ryu
x3lv5jiPHb2fUKD4RTIvMse5O+Z4r8kc582Y47wWc5znYY73T7w/gHNlzHHO
ijnOBTHH+SWsi5dfNX9Qh8cG+PM/WMdtvnNGi5JHXnJdaL12vMx3k2mdNUDm
x+zveGLxkTKf5tC6qZrMvzgPD75P5mucAwe/QuZ3nKcFx7yP85/gB8ROJ1qP
1JDnZn8PF4u/L35OovXFYKlXZ1pHnCI64JwD1hF75fxj9vmuWHyp5AO49wF5
b6r+/D5H5oz29yOAd/903h9bXDnV30cAfvVvs69sedFcf18A+KgtLXZu2rbA
n5MHLx679MDUb5f4c7Dg7tcHcv/S/0t/LhR8XarhT5Ue/MJ/nwE+9+w6nz1b
/d/+PCR4z8Ef/GFauQ/8+UC/vmixqf+3a17z59nAS+/Ydu6Ojb39d7TIS5tf
+sfGL1482eH7ePCWx922u/0Hs/09COB/7pJX71DlBf78P/j75a87o0b1JQ7n
WsGH7bjp0cQFgf9uA/zD04emer073Z/nBB996u3relUa7883gl/86+k1Fox7
y5/H89+fvrPynerf95X7Sn72eWzOCY/9YfqKWf6+BvBrBwzbUO/yfFdF7ikA
77395bGfjV3s30ODv/3HNwYsWP6ZP18KXn/sab/k3vqhP28JPjvR8PDowlx/
PhD8lqKZZ7UtfNaft+Q8CucDmWN84HwA5wN53Ea/MN4XKL5WxiMer+Q8tuIf
yT0CzLvJuXfmch+E4nJPh+L4rgLj5HXSXrjnArz4s06rhl/xFc6Be/6UtCPu
OwB/4r6T5ldbuczdK/cmgPfY1mnohPuXgzvmYsexHZw/5+eKn479xHeTXC98
5wQ+VOIN5/34PDjaBfxHsT9O6gveS/zsJfUCR70k/h3HP87FcX9Bu3B8LhR/
mFeUdmGOdmEu9yZYXPULtIvxXMXRLszRLszRLsxx/tbIMxXH+TrmNeV9X/R7
jWLFO8v9KdHvR/ItrvqX2DHepxRb3PeX8a9fPurQbfMd/AG/tk6zBkUH8Hfc
8j3fEJRUyWmCfYN8xxz+sB34w88V3TzvL9+3Q0/ELTj8B2f/fZyT/+DsP3P4
z3bgv/Xc6HV6vsWN9X6Rsa4vVhy6WZzbXb6jUv5AZ2s/hO3g/CFznKOLjtuk
4rjXiTnWX9F2EorjfiLmWK8xxz9jvlPlCzP3uVj+KJ1lPlUc62U1L0s+Gd2v
dyi+TuKPOc5RM0d+y+2L/Jb5Qakvc+S9zBvJc5kj3vx9S7WnPX79glm+Xxv9
3XF/x/l8rtcGuWfHaHfFJa4UF/9VfWvIOoT5b/JcQ0993kqeG50H/mRx9Vyc
J2GO9QVznCcx3r8rju+PrflCtbv87r+7ke9j8T0u+Kq61RuFf38W9UK7P7No
7cwxv87x5dW8L9/vMsf3zewn7Fj+c74t9wopju96mbc1OMZ/5tVl/c8c53bY
T5xv4fqiPHPsa7EdrH+t+IH+pxXftHLMZR96/cHRXljXgD/w/urqHYuH4z5E
z9+b0PxwrU+G+PUs+NffXtlq7dj3Hc69gK85p2vRt/2HuvUyzvD6Bfdg8n5O
Zl9iuuKd5J4v5rg3k/XB/Y/Mce8n/Gwq6zvc/wg+XdaDaC/w+W+X+/e1p07w
92xi/+d0Wc/ivkj/HYKsf3HfCvjbsl7GuXHw92V9jftNwN+U9XhXufcN/LIv
Z0xfdP4yh3vWwOsUdb678Prl/l4t8HGy3sd9H+BO9gdwvtqff5X9BJzTA28p
+w9Yz2I/Z5vsV+B+T/CLZH8D98uAd5X9EIxL4LNk/wTzAvga2W/BfYjg18v+
DO6VAx9fM/eGGi8vd7gHDfxH2efBPSb+PbvsC+E8uT9HKPtIOG8A3lv2nXA/
lP8eQPapcA8s9nNKZL8L9waCw8+3pV9gn2S97CvinlPwh+U+sVLpL+C1pd3v
l/4CfrnECfoLxu3Fsp+J/gKe6P/MnDa3vuN6S77E61BZt/rx/0lZt+I+OF7n
4r5alZdKv2OO/sXjKvqXuudK+hdz9C/mPaQfMcd9f8Y8ojj6EXP0IzVfSD9i
jvtkeb2Je12Z414J5rjPlDnu32R+pcSrKi/9iDnu42OO++yY4zwDc5wPZ457
ypjj3IvK2yXO+P4onCcBf0z2FWGH9wmL5Hcjv1Uc93axnzhXw37inBXbwXsl
Lp8v/ciyg3rliv+yj1r29wGkvrLuULpJnq/8wTkljk+cv+Xysj/vdW5wzqnr
/n7BaD9P87wPP5jjO2rmvl2JYx5iTvfIeY5xljnGR/WeTnRkju/AmUOX6H3a
fYpDh+j3a7sUhw7MoQNz6MAc9WWO+jJHfZmjvsxRX+b+vJVRX/WeztjfgH21
zyD2Le6/p5X5F/pAP9yPivL+u9DIvx8Ui0f//aBYPPrvB8Xi0X8/KBaP/vtB
sXj03w+KxaP/flAsDv+z/05QLB79d4Ji8ei/ExSLR/+doFg8+u8ExeLRfyco
Fuf7Tn1eJLplj5ux+H7S0/9dFNITnPUEZz3BWU9w1hN8CukGzrqBs27grBs4
6wbOuvnvDEUf6AC/WAdw1gGcdQBnHfx94aID6uvf61F9wbm+/n0f1Rec6+u/
95P6ol54/nN0Xwo47kuBfXC2779zE/sob8zvikMf657V6O+XYnHjfZ9xfiQW
Z+7fNxOHnej9w32Kozzigscxf38e9TtwxJu/T1U43nNl3ze+Udn39/CRfXCO
Z3COZ7/OlTiEbvz9P3QD5/EQnPs1OMc5OMe5v89G/IcOiBfWwd87SDqAsw5+
vUk6gHO/Bke/9uO7cNYHnPUBZ338ffmkDzjrA87jADj6KXSDX9AN/vN32igP
f1ln/3e0xD7s8HfI/j5S4dAB9lFvtu/zbfKfxw2UN/Y5FYdd5v6ecBpnYJ85
7DNHXFnjFXPowxx6Mff3HxJHnBjrC8VRX15nob7M/d8TIY76Mkc/Yu7viSWO
eI3+rjIWZw7dmEM35tCNOXRjDt3U/oDoaN0fa62P1Hsl8ZN59j1FW/29r9CB
z7tBN3C+Bxic7wEGxz3A+N2vz+h+V7+uJ3/4e3h/L6Vw9gec/QEfQfckR79X
KnvfzffZRn9PHour9zXyvOj3m7G4de8fczwX/vB9uVb7Wve/WfW17klDPfje
FWM/R41L+B3/ve36koMdB4xw/w/KEq/l
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[{Polygon3DBox[CompressedData["
1:eJxFm2PY7EjXtrv7TifZoz22tce2bdu27XnGtm3btm3btj3znue+6ju+H6vX
lUqlkq5ULWeijbZfabtep9OZqd/pDMDPqTudkeBXVp3OJpxYhsabOd4Y/CZ0
E3gC+vzc7XTGh+8LPUz7iPD74atDp9Nnf44vAq8I/5IxXgMvRft98KU5Pg18
N3glaHrwRPT7jTEngz/I+WGgKTh3MLQ1eAjnLoH/wfEY0LHQ5hzPQvs64A3B
lzDO5eBNHJ/268Cbgu8Bvw3eDPwn+FX4GNBctA3Xdjr30jYefAOfkfalGWc/
nmO5gfzHB5ibtelzLfwpjhfn/Lb0fxq8BHgh+GLQsly/KPwz5m4L2heEvwgt
C54M/im0OXgB+CfQZuD54S9By4Enh78MLQ8eAn/SccHXN53O9txvR+7/C3xS
2jvOI3xM6GuebQr45TzvX7SPBbX0O472Wbj2Yc4twCW70fY3Y3wDXhX+BO2L
gq+lz+PgRcBXg4eh351cOwr8CO/BuHPC32HcLb0H506zDVoBvDXn5gYvC3+c
a27g2aeAn0Tb7LbT5yj4zNDi4GfhM0KLgodwzQDjTg6/gGdakrYL4cdxflZo
KY635NxUYvjhnJuKtiPgO9M2HbQAxzvAp4XmBW8Ln8b3C94NPj20MPhk7jMD
eBHwVvCpfT7wkYw1tc8IX8Y5B58HvsRj8KXwd7l2G/r/zfEh9FkTvDb8QGhl
8GrwV+izCnh+5vEwjtcDrwdfm/b1wRfTfjjHG4A3gL/s/gDPR/uB4C3AkzP+
k8zdfczhVPAD6LcC7at6H/eL/5H+B3G8KngN+Ou0rwW+jPa7wEs6L+DVwGuA
5wG/CR9LbBu0NvhS2tcCrwu+CHwoY60DXsexaV8NPDftB3O8Ongt+DbQvODl
4B8pIzg/L/xDaGPwPPAxmK8zwDuCf4f2Aq8Ev4K19S34WfhlTdbhM/AO/Q/w
WegzJvhM8E7gr7jHhuDvwJczF7/B/0f/r8D/gZeEb9em//i0T8u1j4KP5dzs
4BfAZ4Ln5dwd4L3o+wLtXeZ4Z/gNtP9E+0vwH/tZ8z/Ap4Meo/04rp0e/Dj4
ePA04EfAx4BH70fO7QAeEXwCeCvwYPDx4C3BuzLenNCw0E7QbNAwrm/ogoIv
hi4qfbaHZoYGQZdDl0HDQ+cw5gjwh+Fn99N2H/xSZSI0HLQHNE/Bi/HuFoem
hj7iP39fZQ5brjmSZ9sI3ICPAG8Ing38PPgM8HpcPwD1oG3ayDplnnOlrFPm
vVFFlk8Kn6wNfpb2jzneFDyf43P8HGPU8JkZ/xnaT6X9W/qP4L6CP8KYLyqL
4OdCI4LPVf8MYu3R53LafoF/SvvS8As4XhY+KedHgdYAX0nbY1V0yBjwx6EZ
wGMqYzm/A89wm/uX4w1onwP+tv8TPBv8TWgd8Czwt6B1wbPC34HWB88O/5Nn
nZEx1oS/V2VNzulabfMfx4GPAT0DHruNTvEZ7ua/3E6/CcEt/A5oIvAg+KH0
/dc+0BHg/+D3QEeDO9C9PhP3fBZ+WhX9/DT4FPBt/OfznX/4a9zrA99hm3eh
DhoCv5Vz59FnEvjuHF+gDgLf4lyDJ4ZPwpi3qqu5flLwbeADwPdDQ8Ajwmel
/Tnw6a5/rrncvcZ4n9H+l3oQvgD/c12e+Qb3H/QP7du7V6C/wdvZrtyFzu3m
+f9UJsHfc03T9q7rmne6GHwr5xC8KHhL8PNcN7I6g/82LO2L0L4F7YPAC4E3
A18M/aSsUX/RvjDtm9PWghcEbwo+pRfdo965kOMf6L8H/W+HDqDtN2UStLPv
gPPj0/djaEGum4v/uBB8bviEjPmgupi+d0IH0/93+Ji0j0X7Clw7Pcf7lzFn
gA4qfXqMdyM0oTYT/e+h/670r8HzgzcBd8FzgddXzrXZn+vB/23zPtaFnwUf
T33G8zzRz3p6zPlus9/Wds1yblL6zKS9wD2v057huMf4c9NnA/oMgOcBbwj+
p82aWwf+exs5uDr8jzZycA14Rf95wRspV/g/u3HfrrK5jfxdDf5rG1m5qs/M
/a7mvuPC/2qzjteC9xlnPvDGrlvwh+A9wD8y5p7KH/CB0PXFlviM6w9knL42
CHQQeHn6fQreH1zBP9deBNfwe+Gt+lS9Ch0wEF3+EXgvcFf7EdpvIDbHx+B9
wD343fAGmgx8KbQn+FT6vAfeHvwP+HCe6TZlCs/7Lm3jqMc5/z60E/hf+hzN
vP9X3tFW8ENoX4n24zjeYyD22+G07wie0mdgrK2UBfDPXCPuGW1YaG/wGcWe
0677C35xE/nvWr0UfEWZt0ua6A7fi3L1w2LPz8L9funGJtdGG4P2P7QV6HOV
eof+o3D8AjQT9xxVmxo+MzQ717zbjZ3/p/PCuTHht/tOoEnAt/oeoIm9poks
+xM+Du93HN7vSoz/NufH1oahz9i0j037irSfxrhXaMPB59Ce7MXmnIQ+L/dj
uw7m/BP24dy1vcgU5cnnnPuF/7MY/Js2em5p+Epc/xTnZ9UHaWOLLAH/uo3+
Wwr+XRudvSz8XehL7QXlPPQVeD74O9AX4Hnkrm/w4vD3HQs8P/ypNnJzavgn
rmPwwvCPi5xZCP5pkVGLwD+EvgUv6NqGfgYvCr+C/7VmL/bTB/4f2hdQBrbx
DWaAv9hGb82o/mnjP0wPf7WNnpvVvct/HruX+VxBH80104/8/52xX2+iI/4A
vwH/oY3dtjz8Dfjo9D9AG5trF2SeV9HObGPnzW6fNvbfHD5LG90/J/zZNj7P
dPCn2+jmadSNbXTztPAn2ujFKX32Nnp3JvgrbfTuLP7XNnp6Zs+38Zfmsq2N
HzU3/Aaop+zj+a9XboIPAd+oXAMfBr6ovIs9tfHa6LyVlV1tbLjl4PdCo4JP
pM897gHtOfB4rL31+vH17oZG1raj/T7waOCTtB/b6M5V2vidCxTfc3yuvd75
o/1M5u4R5ZX+EXwE/RPlP/wp/RPwHfQbjv7HMuZUXDtQx169SnnD+XGgiQZF
1v9Bnx04Px/nVoZ/4Z5TvtFnwip+3Jr0u4vrR9KXov+D4PG0y5UNZQ3v6xoA
D6L9KPDV4L9oPxB8rfoAfDD4ZuW19qLypqzVvcHXgP8GHwS+Sd1An8PBl5b9
uI9yBfwn+ADwxjzjWzzjH8zPQ7SPr62vfwqeCnyWthx4DvA56mXwsOBjwI+A
p9ZWAN8GHgZ8NPghxhwOmopxr1RXca/9tXPAtfYueF/4wtow2ovdyEnt6RM4
HgzfGz4xdC199tVGA18D3gf8fJlP5/UQ+k4LXc3xzRwPA/9XeVnFj57IueP8
NNBVndh7xlK+oc83tC0BXald1U08w2eakvf3PXhc+LHwGYxb0D4a/+cn8Iz6
4eAfyzmfVx9xIfqMxzXTq2dcr6Xv9bQPS/9vy3MMD/6uPPdodZ7h//naZ+tH
6vfwnCPrZ+lPcn7D7lATdKic/RWwAXQStD70Ae1vlbYbOomnqBfWgibtxn/Q
d2igNdVp9Hm5nJ9Je5ox3wFvBL2p/offBJ+sjF91sx+m66XPrGW9PAbdwnMO
yxgd+PmOV8bcqU1s5hT46bStA82p/GwSt9kGfmJ5tpdov4a+U8JHYZyxu7Ej
tIlHYV7mB0+ij9MNnp32X7l+H/DPTey+r2m7X9u8GxvvTo73bIO1+/zfn3Ty
3++p8yw+w63cbzhDN1XsRm3jt5rYEcP7t/RvuXZfaI5O/D3X6UPey30A3gHe
tNGt6tin1DmuF/i93GsubfJikx5S1qpzvF9Zewt1cw/Hn7b0Gb+bZ9FGvasT
W/jAsoanKPGlsYxvdOOfztyJ7zm376cTW+fDbvxPY1Mfw0eF/97N/bzXq934
v7N0sgcXLHM7Qp3rzuwnrvReuceJ/dzno35iLu+X67Wb3yjXT1Oec7xubHj9
kcFtfOf57N/JHtq07Ivh6/jjpzHmHd3Mi3OiPfdBN+dO7ecZP+3H1vyctuW6
2aMrdiMXxqnTdnnxLz/Xt+rEdtNXncR3AP5MHw2aoZ95PZh39ALtz0NPd+OP
XUD7uP34kvaZX7nH8RfgFdyb0JfgFftZc669lfvRb7uAl2NM4yc76iNXkXm7
27+KzN7NccD/QjuAl6wip3cFLw++BxoN/MtA9OdO4GWq6NWdwcuWWMoD4KPA
d4O/Aq8E/7mf2OlP/eiWk/X16PMwNI4uB/wRaFwfsYqMvxH8vyoxRvFs/N/J
oQv1c+H3N1njE6Prnu/HFzbuOaRJjOr0JnrjFH1MbS/tRd7TbHX0xoP60LTv
2CZWswT97+V4dPDvA9Fp29sOfxAaC/zfQHSLse39aHtA3951Qfuj4PHADfwh
5YWPBL8LGgX8w0B8FMNYv+pj+Q7AP+tD8Fxf8vyrQONCq3bjt99EH/5e5++B
+HmvgM9xbqFRXbMDkSGbQIM7iS8dAF+7ij4/ELxOFZ2wejf6ouVeX5XjLbqR
48pwY5jnuPbgY/NgS9N4UT/+0mfdHGvXHESfdav4Tl+Utf5DeXb14jjd+C7G
FD7qZHz9ii2LnPc51UVHuUfdJ9VQMd35fiA6fF/walVsjb3Bq4BvrIa6Lp0/
B2J3bAterIq9sA140Sr2xXbgxeHXVkOXeufHgcQCt1CeVdH5W4MXqRI/NMa1
MfjqKjmNb/m5qhoaMu98PRD77mDwelXsiH3AqyqDwfv536rYYv8Dr17F1jsU
vAF4wiZ68xT4RE3m9lT4BNBZ4JOb2JKHgNen/xFt9OtGtD9H+0TMzbH92BnO
61P9vBvH2cI9V0UXXdaPz/xakbOT9xMrOoTzLxZ5rbx4p0kc6R5j+E1k0VdN
5OWs3cQYl+9HPo1QJe6q7fAoa+Gqft7rrlVifety/EKbWPmo3eQezqVtNHVG
P7H7Mbr/326Qb6ocqrIurugnxqtd81id2P2Y3fy35fqRhcPT97EmsvFz+DL9
yMvhqsRs3lG3gJfl3JOdxEOMN7wOPr9KrOI18HlV4gdvgC+oEuN5C3xxlfjQ
u84heCllCXjYKrGit90T2g/KEfCG8EebyO1P4E80kb3fwkeqY4PcyHUj17E3
jnf/9fOuN4Z/VHSNMdmnmshG4znqkzm6ies+2USG/9BET/o+h8Zpuf59561K
HHtDZTz86n7kxW60P63/RJ/R4XPS/jL47CqywX2nnbVHP2t7cWV/GXM3+Dbd
2F0t9LB2Nu0PwXftJzZ+VhWbq9+N3TVFP3HHw2h/t0lM8j5tn37WzMn95FdG
7sYmfr+fWPVe8F/7uc+e/dgL2oeTQEP6iWseypjvNZHnD8CnpP0+Dg+vYjdr
P6/dTy5nlG6OJ66yBteh/UXfI+0vwUfvxab0fWzWjV2n7aldene57+bd/Dft
ymHr7IWTuPb8fuyFQ/qxHQ4o9oP+sjbKcPCb+xnjUPitRaZ672fL/nUfK+eO
LLLu5iInPWdsUd/Z9XFjkaP20c7SJtPWur7YFBMoW4sMtv1w6LDSfl4T+9H1
uYR2ILiuEhN9D3x5lVj0iuCp4Lt3kwNwXX3NNTt2IwfE2ihfKhPotxL9p4Y/
WcU+Ghv+Kee27mb9f1piUB8XO1b5/knpZ3/ttJ9KjM5YnTaZuQ1tph0LVuZ8
Tv81aZu5StuOpc9YVWxGbbBd2sQPjSNq1zjmFJ3sIduHdPIOfZcfdPKefd8v
Ff2jnqu7ybeuQdtM7pd+3otyVf9Ne+1xZWeTuPTb8OnKXDvPdZv4+0zaCUWW
KlP7bWKqMzbxA/buxl417+Jev7eftr1Kuzbr0PxNJ3vOvadvIt+6YGWAseXJ
4duV/oMK365cu3W51r30RZN25aR4qE0J36Wb3JKy5btyrLx6osytc/wqx78W
3TR6Hd9RvfNW8TvuaOK/mLPQbjY+p22iLjCGrQ5SF2mbXtCJLPoNfLXP04/t
MG1Zt5txfCx9Nq9iL09X5naVJnJGebNGeVfaDPqXHmtHjFHHbz2unxil/vJX
xps4XrAT31x/QntfX0jbZPqyp4wdqnfUP/pG+s/aQpvQfgx8M9pf4Rl+Kfr6
ZejnoqM3cA/bt8qacG3c1aS24W3GGVwnRv6qOrBKbYI+lD6DsdFvyrHx9Ne7
0QEb0f9odSL9X4dWA0+vvjb21Eke/wVjbZ3k3J+Hvu8k5/4q/VYBT+t+7Ma3
US69wvHKtE9TJSemHFYem8/bEDwX/DVoVfB0VXJi6l9jHke2sVM3brIvXOdP
+oxt7P5NaT+D4+P5D0fVwebMjZOcAh1H+5G0X9lPnl/97js3nqBfuTvv6Zhe
cufmq13Xg6v4cx8WWWR+1DypuXLzwcY1zS+rA7VtXK831olFGzttir29JPda
vfiz41SZX+dZGbRmnbz0uL73Nva9ufKH6uTejZFOUaWO4hVthDrzY3zykzq5
P2O2b9eRG8qPL+rkB43H/lAnr22c9rM6eUBjsD/VyW8ap3U9vlH2/pt13rXx
SefqHObkJNqmZNwVOqm1eK9OntHY8lTgn+hzMvwD6wM6iS27R38sa/gtc+6d
xDk/qpOXNBZ9dZ08qbFTc5zmGa09WAJa0dx/HfnzbpEhyqX3ipy5s04u0hjs
g3XqCIzT6vd+UOSJvpl+mXULyvb3izw/qo1/skkTHe/Y2kUXFFtOm+7BJrn1
991zdepbjMmf0k0NjvvZeJI5CGNHe3NuSeOaxlONC9M+Ovz+bmJEM3aSw7qT
dXZiHd9MH83aCfX8W2Uc7YCXi4ydhOuX6qUmZ+Y6OXDjrvu0mZupcbw2hO/S
S3zbOgPrB4xvX1VH/hi3m7CfXOdeVcZyzIXhE/RTZ7FnFRvHZ9BWMM/wZjex
HvPQ5qOt2TBHbn7c2onFoSU7qdm4y7E6iY0/UKcGxBj+qO5Z9wVzOLVxOnNP
dfajtSraYPq0j3SSH1yqSa2C+buBNnkc8zkDTXwZ47fWWFhroUydvYmPbKzV
mNWX2pr62nXqlIzDvwBeppP8wkt19pEx+Rfr1CkZkzeXdW4vPqGyTvmm/+Az
qCO2Af9Wp97JXIl6xJzv1v3YO58V3dFr4mcZQ9aJ1hczVtw28dGM4S9Sp/bA
WPegJr6VceZhmvhlxqX/NqcG3g/8e524h/HnwU3kvPHtl+vsR/Mjw3J8WCfx
4bqJT23u4L86/qkx5G4Tv9V4uDUr1q5Yk3BIsSHVg00T39kchDbd50X39Zv4
7Dqsr9Sx07TXrmtiz442KHn7jdzjVXSJOsV4lPrQuJUxK2uTjmaej1WHF52y
fj91U5/QfkKdmqXNwMfXiX9am2cMVJtGma/s39d11Ett0xltbEFrBqynOpL2
Y1xrbfSK9SJH0P8a2s/p5tj40lLqtTp6yrzPa3V0k/mgb+r8F/Nc39WpBTL/
NXWxOdfiPssy5kO96NfDwOf3EhOZsYqsc3+pl9XR+kIzFbvOmrprmvgHo5ac
zE9lHq5qkusYeVBypFf1kie9sYl/NjrtNzXxU8cYlFzuZb3kc/Uv9DWsJVPf
GjM35nlzE198rEGxrX13q3O8Gc9xZi/1YJs6173Uqh1En9s7qX+4sPjg+uK7
cK+jeqlXU74ZGJqSMbvwJ137dfK0lxe9NgfXPNRJjuOS4kvqU85X+mh36ovc
WnSEOSLjiFWdmPAt3fhWnr+l9Pmnn9j5v/Av+vl/X8G/hx4v7beUMfVxrNsx
PjlMnT2sbWith7Lt9CLfzJ3/XI5HLevcGNV4TWIvxmDGaVJfZD7xxmKDaYu9
xbkTwdswZ492oxvUC9aovM25B9rEG3w/7vmtiz4YoU1tqHbYxHXe0W+cfw1+
Z5vYjTVF1hYdR/sWVd67NrC28CjQ/p3kec0HP1Xmf1zaD+8kD7gw/+tM7RyO
J+R4UY7nqePb6eMZr9FfuKkbv1gbwFi2dql6YUNrBdyX3cjAK4utci/te9Sx
Z+4B7w5/hudbF7xrHV2zkXUJdfL4+kJPw1+j/WLad6mjF3xfvjdrUT5hbe1U
Jzd+cjd2zg3d+JzaxvovHhsXMg++BP23V4fSb2drDur4pvbXR7KezvlZs4of
dGSRG89yvB79d1P2Qi+VtTFuG2ybc3NTmZ8/ueahbnLN1qwe302twk1lDvWR
RzRPx/kprPtoUjv0Efx2+G1F7mlHqAfv78QPV8d+B1+X+z1gPUSduP7tpb+1
qneW+Vmfcw9az1En1+c70k7bqZ9xrQHUlzQnZK3bdW3i49YTvlTiDPojextz
KTU/FzWJCxkf0nY1/6F9O2Ede8baCuNpK3dTB7sRdHUvdU2T9ROjNlbtenJd
zVsnzrNaN7WU/i/j27sXu+LXYtss1CQmY02OtczX90o9czf5FXMrR1SJpexc
/vvF4D2qPLO1hdbBLdAkfmjtjfEN586czibQEYx5WD9xHO1EY1zmKowvWsdl
nOe8bmrvzMfop37QT82OdYzifxlnq07qK7bjOQ9jzCm6ibtY76gNOVUT28lc
uXXLL9DnrDoxGfOS5ietA3+J9rO11ZrUqJqv9/5Dc36d1Mke1Ese1NrwQ3rJ
p5pPPLPIh4/rxJB3ZoxruomzaG8s2CQeZX3Udd3EYtTX2xTfVh/XPXFD2RfK
TK/XTnLdPggeqU1sz9pNbWZzRcY2Pu6nJkc/35iftSnWtpnbGF57q5OaE/fE
CWXdGt8wt2oM7l/6nNVNHuT1fmTjq/Cqif7VlhiuST2t9S3KUvsrN9/p517W
083TRB9Zr3VClfpVdURV/rN+7tf9+HDfwhdtkt8xz7NIkz1nvdnCTdaV9WZf
Fd1h7sBayKfAJzP23E3qBq0Te7RNrss6yRM590Qn9Z9zNqkztDbMteiadK6+
Lc9gHu2Ssqf0B4+s8gzW4vrM38AntyaOcW7ppK7s/Tox/52arJ1Pirx9l/Yt
4TvSvk0vdow2zJfgwweSJ9GWX64X2+L+OvXR22snc34kaAZzKfq+4EHw++r4
m9vRZ+QquWNzcCNViVeZC1ui2Pba+Oaj3Zfmi/WrrHVyvVhPOaSTXN4ZvdS4
GyOfuPgs+i7DVIlXm1P7RrtvIPl8a6L0c4xDWzNo3MkY1DGc/5rzw0C/QxcN
JD6qftGnGK+KDNcvHr+KTnFdub6eq/JdwARVaiH8lsIa+wu4/ryByKbTeqnd
N/avPzIqx9PUqTG11nTSNrHFHYqcGatNjtM62CdLXPKufvwv5/yZOjGrO2ib
gHf6mzbUQOodftAuAw/uJY4weSc50FNo+562EXqJfxkHs1bQOIn/W9ttkio5
C2v4rVfTvjJ2YNzPmKo1M9ZpWGenrPu0Tr5plyb2kTUG+r3muP2+RL959OKT
mk+/rsRtjN8YgxqxlzjU7XXi81s1sf19RuNf1jYbUzf2dU2J8xjv0V79Dvyc
c8C102rjGP+pE8/RR3gOvBZ4hya1CtYw+A2KdeDm082tG3uYoJfYpLWgxlzM
pVsfbpu1DN9x/sSB1ICc1cv3GH6LYV7D+IA1feqQiXoZV//D2j3308XFTzNn
eF0//oQxsRMY41v6DNfL+lkfvm2dWif1uLXA1pstRr/t4Ev3Upfk3jCHbk2l
doexdr9TMcbwC/zcgdS5nAH/sZf5Xb6X6732BvPTA/nP1oZY32584MQ2OWbn
37od595amhN7+T7EfMJZber3lBUntMlPbwl+yXUHzeLctMn1+i6MefidhLrL
+yxW7rVQ8UP1R60X8v1bg2Mcw/zzz/BT29RkKCtOb1Mr73uctoldaT3Y+W1q
/3an7cw2sXLl1Xlt6v120yduk79cXbu1Te5zTX36NrnVNfRD29Qhresab1Nf
sr4+cS86WP17aJu6mfW009vkp9fSt26Th17HOenl+xlzO+e0qXt0X5zdph5S
HXpum1rHXcHHt8mFbwE+rk0efXPwaW3yVcrSg9rkd9cGH9smp74Z+Jh+4lzG
pPdtk5ddTR9H36jYRebXzDP6DY5xEO3AYem7fz+5FesTXyv2v7XWQwbFttuh
TS2jNY3WmmpbWudhXevWvfic+pvWcWvr+z7kixS733e0RIlHWStifHJ6+Dlc
9zPtIxf5pRyb3HUHfkSZ3KaW3fiGcY7z3G8DsQW196yRsFbCmktrL613/buJ
/+O1xkqtHdauNNa9QC++xfuMMS40f1mDi5Z1aMzcXL9y2HoVdYt5K/XI8uXZ
hofu68Zv+pAxxhvIuNbVuK7NiRmvu7vM7f3qOmgIfb6ADi31Cyf18g2VOWHr
Xoz9Wk9+M20DA5Ed5kB9Rv3UD/RpaP8PfFud2iT3mvEeZYbx4/94hqloH5V3
v2AdG1tbe8LyzD67Mny2Isetv7eP8Ti/sRn6rU0/39gM/dYGvHUVv9L4kjm9
B7qJ0ei3ur9PL3ab9ps1JPqRfk9g3MV8pfWY2t3Wn5j3NP/perSu0BjrzGV9
uk6157WvDqzyHvW//mkiK5RNUxdurZv54zE4d1IntaOjN3lOazL1bf2u5eQ2
foR6SH/dXLkxhFv7qQUyZ6S+NCdoXHyEQfFv9XM37ye/r2/idy5+B3Vm8cF/
7+e+29L3vDo1fu41a6T067V5x2xSt2O962hN5lZf3vjr7GW9+W3kvWUtT9DG
l/EbEHP3n3H+FvjYXHtqJzWxYzWpz7Gedskm32RtUPbLgp3EIY1vaWfph+iT
6vNba2Cdg7kYv2Wwxv/sXurzvqxTt6NsNE/tO3qmH9/cGhv9yh/r1CxZ6/tc
0bN+H/RznVopvw35tU7tk/WrxlLcR/p7xuRH6qWWUv2kjtePfqdOnYk5gj/r
1FZZN/ttHZvc2NjXdWqrlOef16lXUU5+X6eeym9MRmySG7JmdaQm+SnrWts6
9YPbFT9eeWKMcrEmuTNt8sWbfCdlTewUTfw763itcdqF8xYTTdnk+1frafXB
9Tn0sWcva9H3aB2jtYV+t2ItgXWaXu83O9b+aWeP3CSXZx2yuXvzoeaMzNeb
u7cmS5tG28YaA9+lsWW/K/WbU/135fCg8r/8f+YYzTV6rI1gjNrv8azN+LST
b7wWgN7Uv2A+b65jV6sv5mtynePdUsf2Vtfo5+vv+93e0k18HL9JMQ/gd8Pm
QK6vU3NizmKZJv6I35v069zfb5dWaPJtmt8K3VpHLqnXrqtTl2LuTJvWZ/BZ
VmzyTZbfH5mrUV66ji6qU2Ombt2//F/32HJNfCW/P1q+yTdcfq9kbZXfpgyt
r6pj81sjtHKTb/H8BmqlJt9e+Q3UNXW+HTM3cUWdmjp1/fl16tC0E4wFGrvz
fxpjNFZnzPHKOjk1v1W5rE4NmzbDDXXqgswDXlqnFk57wNiONUZ+12aOXvt9
MGvskjp1cer0C+vUDWqTXFCnbk2bxBzuh53Uolxepw5Q2+P/AFPEo4c=
"]],
Polygon3DBox[CompressedData["
1:eJw1mwXY3ETbhXc3m2RbtECBohWKF3d3d4fi7u6uxd1b3N2luLu7u7v7B/z3
zcl/XZ2+c2aSbDaZeeScZwdtutNqO3ZarVa3S+Pv3FWrNR8Dm7ZbrX70F++1
WpsxviCTn9BfmLFlmB/N2NCy1ZoZPCl4Xo4fi/5HRavVoQ1kbFHGZmNsKvor
0Z+U/iCusSz4Ss4fVnMeeE36M3P9N+nPzLm7Mj8Bxy9OmwN8Jnhp+udw3JJc
Y0XwuvRn45y5md8LPID5FWkzMj8BeFb6E9H/mPkJafN6P7R5+Iw1OHcmzn2D
/pzM7cn4xBy/HG06xsZl/ivGn6D/AX9btCk4ZiHmZ6e/B/2J2rmnzTjmCQ45
heuVfbg/8BbghcGf0T+H43/h+PFps3D83Iyt7ndn/nX6szF/OnNLMjeK8Q5j
V3oc/R95PjMxv4vnM7YI7VK+Ex/TupnzD+fY6Zg/jfklvB/GF2d+OfA69Gfl
mA2YvxH8EPMXMzY156wMXpb+Mxy7MHhD3zvHvk9/GtoqzC/n+6W/EG0D+nMx
/x7947jeN8yPQZvR98M15qT/GP2B9F1Mh9OmAY9LO4L+UM5ZvJWxrTlmavAS
4Oe55mHMTwVezHtjfjDzv/lcaW+yvhblMzdmbl6O/ZD+GLS7mbuRsTl5PvOD
126+69v0F+daF3LNtTjmQsan6mW9LMV1Z+DBLQAezvgcHP8O/Rk5fifm+3H8
fLQd6B/ayb2MQxvG/M7g8egvSFsSfAJ4DvqL+lzAZ3eyds71PsF7gycBr0J7
DTwubeZmTz1GfxzaMPDG7TyLkzu5ts9kRu5pSv72uL+n6S9IW9/vCn7X98Px
p3SyFpZk/B3w//w81zZjF4B/o9+/2QMzcM5EHPcX40+5l3kOf7reaafyfE9j
/Af649Bm4viTwN/RH4s2DDwt+NRO9uJSXGd+zl+s2b/7uYeY/x08IW02nyGf
sRZzszD3Fv07eEf/Az/CZ03G8x/G2EBwH+afob8A55/Puat774y/B/4HPBlt
fsYmd427d5gbk/5zzI9Pm42xg5hfjLFNmVuA631Mfyvub1QntuByPnOGImvS
tTg3bRD3cwLHb8ncAO5nTtc7eDrOf5X+JLRnOO5OxgbQf5HzP+L8Nu0sxi/i
7xW0M92PHPMk82PRZvD50R6g/zZ//2R+Pdqu3M+URZ7ZfPTvo/8l/R5tbeYv
A99K/5V23knFMc/Rf7KxKT9xn/d63+C+4F/A97lPwMvRH5t7vB88K3gs+v8w
9nizP/4u831eAD+tPaR/MZ93C5/zcjvv7Brw7fx9rZ1nvkOV7+h3e47PW5r5
68Dn+d21O/TvpL0JfsrrMv8VuA9tC/Bf/L2csbnoD6B/bCdryLUzPWPHcv0d
iuy1s7m/napc02utpv2g3QR+2P1D/3L6C3P8Mpx/BmMr03+RsV/o/0rrVvlu
2uCTud9OlWvNC27T39c1SL+kP32f7PUR3lM7e969fRRtunb2+Led7AHX/pj0
r6c/mr+vt+MDvDefic/Ce/yU/seMdWgj29n729BWbscGnOd7d41z/GrgO+h/
xljZ+MR9+LttJ3OT6uPcxxxzXivX0Ddtpb1ux0fdxdznrhPaquDbwZ/S79KW
B98EvoP+G+344GP43tsWWfun87wfYuxV2u/gt2lr6GuZn9375DPf4O8URXzl
FeA9OP9lfZ/+ohtfuzVthXZ87j0c+wW4pq0BPqMTn6YvW8rv5B7yvsET07+g
kz3vXl+T8Ws7jc0Gnwu+oRMbq229Bzx+L77lJtc//auZX4z5keCzGd8XvF0n
15rMd8gxjza2+RG/O+0D5v9lbIhrjXM/7OhouU47a/Vd+v9rZ81eAn4H/Je+
3vVN/+Qia+Ez8PGd+Fx97QzeP/33GfuH/gKu/zLrwvXxJ/2rmH+P+b/biZH6
cw+fate0d8yPwfxDtOk7sXNj0n+4iL1z7CKO51/rep79IT6/KnHatfx3EPj8
6r/wpHUN+EDwhWAu27oOfDD4Sa7xIQcswt+PvX/mdy+yF4/SJheJcYxtFuaY
c6v/Hk3ras4/gPMnLxLTGct5jat8Dvpv3xttkO+ftoLrjzawyJ5wL3jM6VVi
IGOf48vYwquac7WJQ7SHReIN447Bru8i8YnXfIL2fpF7+4hrXKqt1L50smZP
4Pp7FXkXx3D921y3RWzPq4ydzPyB4AI8Df2TaAcUWZsr0D/F51skRp2V/qPa
NvACfm47tu4l8ByNzRtA/y3anO0cM0kRH6zvXRDcv4jP0Fd4zkRFYgB9v3H1
I9oS8Pz8fc/9UcTn6esWYuxx2rtF+h8aL/D37SLX/gD8nO8IPB5/v3S9F/GJ
+sJZGXuWdrYxB3+/YOwQ/j7j8+fvT+AD+Xs3eCh/v9eG8/d4cN9O1qW27jrw
5I3NO4tncnWRGN9Y//tOYgZjhbHpf91JTGgs6DXGLhLjGNvMCO5XxEfoG7yH
vkV8pL5xWnCfIj5RXzgN+CDaveCp+fsDYwfz9/4icz+Ce0VsjrbGY54q4oP1
vcZYf3ey59xr3vMzrsEi9/o5Y3URG6rt9Bn80cmed69P1IkvvrRIX598Bt/5
105yihnon0YbyXw/8PT0f+TvWeCZ23nm+9FuAw/m7zft2NpbwIMam9vV3+vP
2jnm7Co2XNt9Cev3VPCZRWLHq8p8tjGdsZz3oO9+sMiz04dr628ET9nYfNey
Pkbf4prenzYaPIS/3zJWFLGB2j7vaRH2+EbstXnY7x/Qf4uxTYvY2z/0q0V8
rr7WmPW9MnZae/0O/cOJpw6ivzbnX8f5h4IP0LaDrwEfAt4fvAb4avBh4APB
a4GvBRfgncH/gK8H/ws+n+vPxtjH9A+m7Ud/deavYn4f8G7aBvDF4P3Be+or
wZeB9wPvAV4JfCn4APBe2hbw5eB9wbuDVwRfAt4bvCt4efBF4BHgw8Drg28E
HwE+FDwcfAN4FPhB8LHgh82H6/i2WXgWj5r70Z4Cn858j3hjT+Z3Ai8NPp+5
3cE7mMeCzwXfyPueEHwv+HjPZ36osRz4OHBf5l9qJyastaXMP8T8ccw/wvxe
zfNbBnwBeCT4UvDe4IfA41Tx8/PoQ7jHgcwfT39z+hNxf1OCjwNvCp4QPDX4
VPDv4GnBZ4MvAe/F9R40/6qyL2Y3PuWYI5k/nP4GzN/E/EnN+duD7wafCD4F
vB34LvP7XmKJKcDP0X/FHKSdGHxaxtqMXa4vBn/PuY9XyZdfYW487ueJKvn7
q+AJfL69xKqvcp0hJsbgSzl/TrrfmD+bQ9GfnOOfpT+L7ww8Jfh5+nOYDzef
/Qr92WkrmauCX6bfx/jRvcjYTFzvBz7nTvAD4GO6iTceaec7/I/5N8rEJcYn
B9N/sgq/8RrH9uf+ZjMfNdcFv0R/VtoK5trgF+mf8P/5CfgO8KngM8A7ge8D
nwI+Hbwj+F7weM3+G8v7Ap8MPg28A/P3gI8CHwHeEHwz+GjwCPBG4FvAx4CP
BG8MvhV8fLM+tgCP7oUvWKkTTmEw/SVomzO/EPOf2uf4qczNwMeKe8ldTgVX
fN/jmvW1Ofh25o4FHwveDHwbeEva08b24D4c/zK2ZrMitkdeYdM6uY65z9Ec
O2YVvz6H5/CdDy4SoxmbGQPvUSRmMFYw5tP3P9X4NmOAXYv4WH2rMdtR4OfB
X7WTk40o4mP1rca0LxSx6dpyc85Di/gUfYkx/F/c30nGrdzPHHXW327gL+le
UofP2Qf8Nfgy8GNVuJB1uPfx+b6PVuE+1gL3A+/BMTsaO/N9z+Pcw4v4dH25
Mb/7Y0/6X3HMpRx7UREfr28359c3HdT4Tn3Unu7XTtb8s1xz+yIxjrGNMe++
VWJ+Y/2B3MP+4OGd7PmN6O9HW68T7mgD+gNoXxtL027h+POK+Gh9sxzXXlVy
CnOJtenv7foHzw9e13iL4w8Af9cOx3BCER+lb5JTOrBKjGJsMh39nYrEQMY+
xtDbFImhjJ2M0ffhmNfBl7unzSd5JgvQn4zveibP6h7zPvC/zE3H892xzr1M
yvwZchXg8bQVReLdbWnPg0cyPxbHbw1+FnwWeAzwVvID4DPBfcHbyEmYi4DH
BI9fZe2NRTuHz9yY609u/sn8Ufpa8GTgAnwkeDvwMPCE4FPdD+Bpwf3AJ4C3
rnP/44NPkt8ATwceD3yi9wueEdwffAp4G/AM4AnAJ4Ov4n7G1j/IFXB/azM/
Pvi7IvnCuuD+4J+K5AsbgicFtzl/BPhVzl8N/D74bPDOzK8Hnh18lmsdvD14
CfA54F3B24EXB48C7wLeBrwYeCR4sirv9lrGBnFPezO2A/g2+kO5v8mrrN3r
mB/M2HDOn7gV/uowjt0APInvE3wEeB3wBOAfiuRDm4GHgMfg844Brw8eAP67
CF86QZU8aGzauVx/vTr+95ci+dXFzLuNb+D8Q8Ftxm8w/2gnxrqM+b7M39LN
58tH3sVcm/YgJ75cJZ56p/EnL1bhT99q7P1LVfjWtxv/8koVfvPdhn/S7+v/
PzeGKfM9/D6ftsL3aGe1t58ZA2nzOX9m+o81fOHdVXLHxxt+zXXgeniinT3w
WhW+7APGX/P+6nDtQ8AvgC+pwhfeCH7c52FcRFuYcxeh3SR/y/x9jD3pXqnC
T77Z+K+lOeZDcMU19zYXruJfX2787Z6MdbWdtL3kI6r425eaeOCBKv7xxcZf
v15Ff/iwG77cfeB+GO4aKrOn3FvuqSurcMJyX3JgE/TCicmNLcm7G0h/MY5Z
okquOgQ8BW0e+rdzzIyc+z3X/LHMO/X82Rm7nrlb9Qfguer4fmOAvs3zHtQK
Ryc/qQ/QF9yuP9F2VNEq5KDl0+Wg5aL1qfs3n6/tVZ+Y0niDuV4VzmQyYyWu
93w7HJ585B3dcKcDOefqKvGn/tb4UH5lhzq290nwhL3YPN+7779/L3yMx77U
XN/jnXON3NtwZHJlcqDyhTfTn4a5+7vhj/1MP3t0N/rIG1XigY+60VMm53pn
gyfiM38Aj65i/x5t7NsV4DHBtzX2z3c2ls+rsY/XVbFPdzX79/oq+/vuJr64
tcr+f6ixh7dVsVcPN/bulir7/cHGPt5Qxb7d08TT11ax93c28cTtVdbOI439
/ID7X7+dWPl0nw9//2rlefhcdizDZ/t+fE8jjHPB/9CmYe7QbtaSa0p9bKkm
X5iH/mNc7w/O2Rr8G8ddAX6U+R7X+tU4uJd34Lt4qvFP91Wx7083/sz3oT18
oPEPZ9Xxzeo7/cDvNOvt88beqnMZL//QSgw6gfEK/XH4vO/cT+ATwWODvwVP
D74NPMR90Mue8PtMBf7J9QM+S38F/r6XONF48ZdWcgjjVuPXX1vJMd6sood9
3I2+ZxxoPPgzbeMya/4/bY7jfu4lbzB/GMX3eatMHGs8+2A7OUnXnFD7z/hX
zf6SO3qj8UfqauYL37eSI/wtB0z/d/pfMj825x8D7nGtb4wnwUeDa/DX4O84
bj7a/LSPwG9x/pbMf9KNnvE2eCvtcTd6k7ql8f2PtNe7yZm8T+93XOYX8Hs1
nP3A5n0553eapo5PXrbMHtFX1+DTuskhV2J+qV4+fxHGPnc9MHazuTvtXfrj
cPxdnL8X+Ic6MeV6ZXy2saY50vAyWtF/uZPrt0zOIj9qTrVuGe3JXGsQ+PEy
/nlWrvc0/afK+OPZwD/XySUPcM3W0XeupT+F76tOjmSudI3xtr5R+6nvpL1t
LM/1d+Z6x4P/bK7/ZJn9c2+d7+B3GZP2JP1vzdeNDeUi6E9pDtjN2Hd1NFK1
0n3BP9WJodfmequ2EltPDf66zD10e8nB1i+jR5ib/aIPLBPD70R/EmO6Mntk
iLEQeFvwye4B8EDwQ2Xih6eb7/MM+F9tpLEd/e3K5LxD6+TYW5TRrs291Zy2
LqMVqkVNbExZZg8OrpODb1aGPzc3135LAKtnGMvqH+QE9An6BtfbH2X4ZnP3
7en/RnuA+XH4PorFu4M74Ifq7DH3mhr8fr08n2+YP4z5WczlwLeWiS8uBE8D
/q5MvP9+nfW8YBWuevLGn6o5q8E+XcV/qkHJ2cvd/0k7orGRi5hrmpe28rym
5bh79NfuDdo7dXJ4c/nTjffNfes8K7WPV81t6zybCcEvmwvXebbq8a80z3/P
brSAN429ud6BjPXX5/l86jxLbby2fk3a0HZikkeaeWOL6Zvn/VkdrmNHxr6o
syfcG95z2cuecG+4Jyvw15zzVRU7cmEvPkRf4p7ZtRc9etVOuG61dt+R7+oQ
2ug6PkBfoKa3XS8xt/Zok1Zica+5bDecj5/1QJ3YZDDtvToc0thNDCm3ZAz7
e5EY19j2E+PzdnyOvufMOrb21Gb9TMHzurmM/v4R+PM6370P7TH6X9bJvXcx
p6X/Ccd+XGbMOdeYa62gPVzn/lr0j2vip6/qnNuX9niz3lYsw/nJ/ZkDmAsY
/17U3J9r+xzm/2k+73baF36fOvZsvzJa/TN11pO2ZETzfrSXrrWjm/fjHnYv
/2nMQf+aOrZP7e95Y7c6tsGY2Nh4SOMv/zBmafbXZ7SrG/vmflZL/o35W+po
3GrdB5ubGs/Usb3Wb7xQZ4+713+n3VqH45Tr9J18Sv8oeZ1Wntl0ZeJNudjp
y/CNc2v/wTOU4f+WA78Knt89zmcvD34NvAC4sB6lTj47lzaK4xevk8/OAf4b
vESd/HVO920vNlRbeg94XH0T+BXm5wO3wSeV0fkvoO1Lv+J+a/oft5Jjrsjx
b9BfqEw9zILgx8Ezg//g+vODHwUP85mBjyyjve7CGt28Sk2C2ooai7UKckhy
SfpEfaM+8c1WchHxCuDXwQsaG4AXrcMnzWbcpv8FPwaeCfx7LzZI3zprGdu0
WJ18fnb9InhgN7qw+rD1Kasy/w7zi5fJ928qo+W84/ulf2+Z57Uf7b4yGpfa
zM+daF/yJWof6uPT6o+q8FDyUWqBy9MU3NQkT6ySH6utWI8h/zFLFS1GTeY4
+seV4XXMkc2VV62ihauJH1xF8zf/ccx6HDVPeTA5CbkJ81+5fz9zqir1Nmp1
6tdDzfV7Wev6PH3fVXz/71qJKYwtrtAnt+Jj9bWr9rKW9Zn6zsvKaMOHcL9b
cr2LymjXB6kBVYktjgQfRduf5zsv13uE82dk/FeutUove0mfOHHja401DtSe
lHkmPpszinBFK3P+Wxy/aBm+fTXwu+AlyvA1+i5zsdG0EdqVMrHJJ7Qj6J9Q
Rps8gfac36EKF6Veoh5zYhnt5WT9B/2RZXTevWmTyHmYj7dj8+Yt42uWbqUe
67wyz1/uQA5BLfqwMr7MZ3Ih/cPL6Og+s0uNK6robr7zUeAJq0bn62RtWdNi
bYA1Ata6uEZdq0d2Uls1XhVuTH1xHvpnltHC9qANcB+VqQWwHmZ/+meVqcVw
zR9Af7kqtU1bcf1tqtjWRVsZO7nMd/a7G6M9SX8VnvfbzC9Whr9drQx/Jed5
N/1VyvAFcqKjy/jgn8AblvHNe3RTC2D9z9Xajyr9UXz+dvSvLKOFWUuxO8eu
VKW263zmtzde7cZ2a0Ne6Mb3X9jKMddw7up83nvgJcvwc2uA3wcvVYbfu7iM
9nYd7Sv6V5TRzm6gfds8b2uJfEe7deP/9S1PlImVVy/Dx+3P2P1lnrHP2vjU
OHWnMvqQ8dWjZWyEtsI1IT9oPmmtkf5Cv6HP3cDPL+OLXfOuffesfNUvdfaD
+8JYdNUy+bmc8J1l/M+XZWJyY3O/zzWt8K3WX67Z8EWrsT4OqVJfJL9ufvJz
sz+sTTAmMY7UxmnrjEeMS7R/xg7vtlMfumYZ7cZ8wrxCzsB6nKLhEqxnsjbH
eFX9ypxf7tOcXS7A/WXsIv9uvab+xVjDNexado+6V9VLrZdwPavtWK9kval7
0r1p/G4cb+xibZo2zfrBA+QN2tFn5RONKdVqXi4Ta65RRauxpmS3KrHnIq3U
d73e7He1KPeke1P95/5W+CF5otWr1CZZo7RzlRhscHMv5hbmTse0cw/ey4R1
9MXxyuhjE9XRz8Yvo9f0raNXVmX0mLKOPtkuoz9WdfTPThl9cpw6+mrfMvpK
r47+2S2j9/Spo4+WZfSeuo7+WZTR66atoydNUUYvNCc1N528jN4nGape+Vc3
eq75tPzuH93osf9W4X//7EbfHVBHX+pfRq+auI7+NEEZvapfHf13zDL6ljG8
sbxa2f29xHjGemrLD4DHraMnj1FGj2rX0Uf+141+3Kmjr/7djf5sfq9e3KeM
vtS/jn7br4z+qB5q7P8zbcoqOaixqTmcudxu3jfHn6g9KcORy5XLGVlrY/2x
tbXyd/J4S1eJ5Y3pl6miIagl9GullkZOXW5dDsvaHDljuWs5KrlkOXa5djmt
y6tw1HLVcjzW+sppy23LiVn7c1U3tcnWKJ/HvQ+rUvtpDeiZVfQxa1Ecm4n+
xlXixTfBR5lHVvEN1qAc7XepUmtjzc1h2tYq/LE1SIfS37BK/GlNwJH0h1fh
f9bmGkc08drETa2E2vD6Vfi/ddXS6K9XhZ95DXx4FY5drl1Oztomfa6+Vz7g
2TIcv1y/HLRc9I1las2tOV+kCh9nPZ/xt3G4ucfF9C+hfVomJjU2NZ94v0xO
sW07Oa25xs69xAPGBea2nuO5PjP1RG2+tl++QN7AmMHYwRhOvUsfoa/Qvn5R
Jke5kP6HZXKXD8rgi2gflWn2jWnVy62h0XZZc3lWk0vLTS9FW8h4pkotqTWl
I6vEIMYiZZFaEesb5Xatf5qzyjme6zmzV4ln5IaMGYwdjLGMtYwp1Vv0d1e3
EuMY61jDq71ctuHg5FfuKOOv1c9db3L6nWY9m58uX0aPMH+UvzLuN/4/v04N
hrUY2qBfq9RcWHuhDfq9Sj75WSuaj/m0+ajX8h2Z/1iTYW2GNu5Hjv9CvqIb
zlTu1BrweZt82DxbzrZ/o3HI5ZoDWAeqzzE3sKbF2paNwV9U0SjU2tUY1C7U
YNT61SjUZuSo1eLkXOWurSGxlkSb+XMV/kgeVT71enPbMrUj2mhttTbRWhU5
R22lNtHaF22SttKalRWa47+vws/JU8pXXtvkn3KJcoryU9pca2m08dpibZ61
M9pEbaH5pfcixyu/d6X8Qjc+5M8qzecm1+ycHI1cjTHYjXVsprU72mRtqb8B
8LcAalif6c/UW7rhE+Uf5NzVYIx55OL9TYi/DVED+KEKp7p68321xWpa1lbL
x6l1yUcd303Mv0svNQTWEmzhPVXh+OT63NPm9+oly1axr3In3s+8zfv0enKE
coXWfKi3azN0Wzd1Y0vkBOQG1Ngvr8MRq13KkcsdP1snFlaTv7LObzb87caW
4F+qaHjWhhjjqO2ZY5/YTU5p7m2OfVI3Oa65tzXo1qKrWX1XRYNQqzUmVpsw
J1FLNuc2V1GzUKOTb1LLMGe27ltNx1xajkSu5D+bUkcDUQNUE1QbUQNQKzYG
VBtQ41BDnKoV7UPOWO54K/BvVTQVNUVjPrUWNRBrKwa1oo3Iga/WrF+5cTW3
YY2GoBZnjZTrfRdtSBX+Te5fDUB+U82xT3M9tTE1SX/LMLAVrVJNYZ9u9Hq1
BjXHDcqsefkWNYZ9u9HE1B7U6NTqVm7qT/zNhr/dUHN8r0rOeHA3moW55MRl
akusMZmijiY1U8PRq1XJMco1GpPJN8tJy02bk95dJ2bbpWz9x78Yy8l5yn36
mxP1XTkENR59ktyCGsgm3WgIaiPG73Jn1gx9WDe/aermNxFqIWou64EPaUWL
+ayb3zG5HtVu1Bj87YR7VO1BTuLIhhOSq1Bz8LcuxiBqEXLucu+HG//X4TxG
NByrXIh871xV9Ci1FjmXQ7rRdORi5IDknIx55IbkaA7rxsfK3ajhbdqNZqK2