forked from sabeenlohawala/tissue_labeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmakefile_requeue.sh
114 lines (106 loc) · 3.16 KB
/
makefile_requeue.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/bin/bash
#SBATCH --requeue
#SBATCH -t 12:00:00
#SBATCH -N 1
#SBATCH -c 4
#SBATCH --ntasks-per-node=4
#SBATCH --gres=gpu:a100:4
#SBATCH --mem=40G # per node memory
#SBATCH -p gablab
#SBATCH -o ./logs/test.out
#SBATCH -e ./logs/test.err
#SBATCH [email protected]
#SBATCH --mail-type=FAIL
export PATH="/om2/user/sabeen/miniconda/bin:$PATH"
conda init bash
# Set default values
DEFAULT_BATCH_SIZE=64
DEFAULT_LR=0.001
DEFAULT_NUM_EPOCHS=20
DEFAULT_MODEL_NAME="segformer"
DEFAULT_DEBUG=0
DEFAULT_NR_OF_CLASSES=50
DEFAULT_DATA_SIZE="small"
# aug_flip = 0 1 2 3
DEFAULT_LOG_IMAGES=0
DEFAULT_LOGDIR="/om2/scratch/Sat/sabeen/test"
# Parse arguments
for arg in "$@"
do
case $arg in
batch_size=*)
BATCH_SIZE="${arg#*=}"
;;
lr=*)
LR="${arg#*=}"
;;
num_epochs=*)
NUM_EPOCHS="${arg#*=}"
;;
model_name=*)
MODEL_NAME="${arg#*=}"
;;
debug=*)
DEBUG="${arg#*=}"
;;
nr_of_classes=*)
NR_OF_CLASSES="${arg#*=}"
;;
data_size=*)
DATA_SIZE="${arg#*=}"
;;
log_images=*)
LOG_IMAGES="${arg#*=}"
;;
logdir=*)
LOGDIR="${arg#*=}"
;;
*)
echo "Unknown argument: $arg"
exit 1
;;
esac
done
# Use default values if variables are not set
: ${BATCH_SIZE:=$DEFAULT_BATCH_SIZE}
: ${LR:=$DEFAULT_LR}
: ${NUM_EPOCHS:=$DEFAULT_NUM_EPOCHS}
: ${MODEL_NAME:=$DEFAULT_MODEL_NAME}
: ${DEBUG:=$DEFAULT_DEBUG}
: ${NR_OF_CLASSES:=$DEFAULT_NR_OF_CLASSES}
: ${DATA_SIZE:=$DEFAULT_DATA_SIZE}
: ${LOG_IMAGES:=$DEFAULT_LOG_IMAGES}
: ${LOGDIR:=$DEFAULT_LOGDIR}
# Use the variables in your script
echo "Batch size is: $BATCH_SIZE"
echo "Learning rate is: $LR"
echo "NUM_EPOCHS is: $NUM_EPOCHS"
echo "MODEL_NAME is: $MODEL_NAME"
echo "DEBUG is: $DEBUG"
echo "NR_OF_CLASSES is $NR_OF_CLASSES"
echo "DATA_SIZE is $DATA_SIZE"
echo "LOG_IMAGES is $LOG_IMAGES"
echo "LOGDIR is $LOGDIR"
CHECKPOINT_FILE="$LOGDIR/checkpoint_0001.ckpt"
# srun python -u scripts/commands/main.py train --logdir='/om2/scratch/Sat/sabeen/20240212-grid-Msegformer\\Smed\\C51\\B128\\LR0.0001\\A0/' --num_epochs=100 --batch_size=128 --model_name='segformer' --nr_of_classes=51 --lr=0.0001 --data_size='med'
# srun python -u scripts/commands/main.py train --logdir='20240205-single-4gpu-Msimple_unet\Ssmall\Ldice\C51\B370\A1' --num_epochs=1000 --batch_size=370 --model_name='simple_unet' --nr_of_classes=51 --lr=5e-5 --data_size='small' --augment=1
# Check if checkpoint file exists
if [ -f "$CHECKPOINT_FILE" ]; then
echo "Checkpoint file found. Resuming training..."
echo $LOGDIR
python -u scripts/commands/main.py resume-train \
--logdir $LOGDIR
else
echo "No checkpoint file found. Starting training..."
echo $LOGDIR
python -u scripts/commands/main.py train \
--model_name $MODEL_NAME \
--nr_of_classes $NR_OF_CLASSES \
--logdir $LOGDIR \
--num_epochs $NUM_EPOCHS \
--batch_size $BATCH_SIZE \
--lr $LR \
--debug $DEBUG \
--log_images $LOG_IMAGES \
--data_size $DATA_SIZE
fi