Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue using partial_fit #329

Open
8 tasks done
bdpedigo opened this issue Sep 27, 2024 · 3 comments
Open
8 tasks done

Issue using partial_fit #329

bdpedigo opened this issue Sep 27, 2024 · 3 comments
Labels
bug Something isn't working

Comments

@bdpedigo
Copy link

Checklist

  • I have verified that the issue exists against the main branch.
  • I have read the relevant section in the contribution guide on reporting bugs.
  • I have checked the issues list for similar or identical bug reports.
  • I have checked the pull requests list for existing proposed fixes.
  • I have checked the CHANGELOG and the commit log to find out if the bug was already fixed in the main branch.
  • I have included in the "Description" section below a traceback from any exceptions related to this bug.
  • I have included in the "Related issues or possible duplicates" section beloew all related issues and possible duplicate issues (If there are none, check this box anyway).
  • I have included in the "Environment" section below the name of the operating system and Python version that I was using when I discovered this bug.

Description

Errors when trying to use partial_fit in a variety of ways - I am getting this with int or string values for y and with and without providing classes to partial_fit. Could you point me to what I'm doing wrong here?

import numpy as np
from treeple import PatchObliqueRandomForestClassifier

X = np.array([[1, 2, 3]]).T
y = np.array(["x", "y", "z"])
classes = y
porf = PatchObliqueRandomForestClassifier()
porf.fit(X, y, classes=classes)
porf.partial_fit(X, y, classes=classes)
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
File /Users/ben.pedigo/code/meshrep/meshrep/sandbox/view_model.py:9
      [7](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/meshrep/sandbox/view_model.py:7) classes = y
      [8](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/meshrep/sandbox/view_model.py:8) porf = PatchObliqueRandomForestClassifier()
----> [9](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/meshrep/sandbox/view_model.py:9) porf.fit(X, y, classes=classes)
     [10](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/meshrep/sandbox/view_model.py:10) porf.partial_fit(X, y, classes=classes)

File ~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/base.py:1473, in _fit_context.<locals>.decorator.<locals>.wrapper(estimator, *args, **kwargs)
   [1466](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/base.py:1466)     estimator._validate_params()
   [1468](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/base.py:1468) with config_context(
   [1469](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/base.py:1469)     skip_parameter_validation=(
   [1470](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/base.py:1470)         prefer_skip_nested_validation or global_skip_validation
   [1471](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/base.py:1471)     )
   [1472](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/base.py:1472) ):
-> [1473](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/base.py:1473)     return fit_method(estimator, *args, **kwargs)

File ~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:595, in BaseForest.fit(self, X, y, sample_weight, classes)
    [592](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:592)         random_state.randint(MAX_INT, size=len(self.estimators_))
    [594](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:594)     # construct the trees in parallel
--> [595](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:595)     self._construct_trees(
    [596](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:596)         X,
    [597](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:597)         y,
    [598](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:598)         sample_weight,
    [599](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:599)         random_state,
    [600](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:600)         n_samples_bootstrap,
    [601](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:601)         missing_values_in_feature_mask,
    [602](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:602)         classes,
    [603](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:603)         n_more_estimators,
    [604](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:604)     )
    [606](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:606) if self.oob_score and (
    [607](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:607)     n_more_estimators > 0 or not hasattr(self, "oob_score_")
    [608](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:608) ):
    [609](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:609)     y_type = type_of_target(y)

File ~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:661, in BaseForest._construct_trees(self, X, y, sample_weight, random_state, n_samples_bootstrap, missing_values_in_feature_mask, classes, n_more_estimators)
    [650](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:650) trees = [
    [651](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:651)     self._make_estimator(append=False, random_state=random_state)
    [652](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:652)     for i in range(n_more_estimators)
    [653](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:653) ]
    [655](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:655) # Parallel loop: we prefer the threading backend as the Cython code
    [656](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:656) # for fitting the trees is internally releasing the Python GIL
    [657](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:657) # making threading more efficient than multiprocessing in
    [658](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:658) # that case. However, for joblib 0.12+ we respect any
    [659](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:659) # parallel_backend contexts set at a higher level,
    [660](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:660) # since correctness does not rely on using threads.
--> [661](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:661) trees = Parallel(
    [662](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:662)     n_jobs=self.n_jobs,
    [663](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:663)     verbose=self.verbose,
    [664](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:664)     prefer="threads",
    [665](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:665) )(
    [666](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:666)     delayed(_parallel_build_trees)(
    [667](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:667)         t,
    [668](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:668)         self.bootstrap,
    [669](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:669)         X,
    [670](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:670)         y,
    [671](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:671)         sample_weight,
    [672](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:672)         i,
    [673](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:673)         len(trees),
    [674](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:674)         verbose=self.verbose,
    [675](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:675)         class_weight=self.class_weight,
    [676](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:676)         n_samples_bootstrap=n_samples_bootstrap,
    [677](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:677)         missing_values_in_feature_mask=missing_values_in_feature_mask,
    [678](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:678)         classes=classes,
    [679](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:679)     )
    [680](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:680)     for i, t in enumerate(trees)
    [681](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:681) )
    [683](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:683) # Collect newly grown trees
    [684](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/ensemble/_forest.py:684) self.estimators_.extend(trees)

File ~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/utils/parallel.py:74, in Parallel.__call__(self, iterable)
     [69](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/utils/parallel.py:69) config = get_config()
     [70](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/utils/parallel.py:70) iterable_with_config = (
     [71](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/utils/parallel.py:71)     (_with_config(delayed_func, config), args, kwargs)
     [72](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/utils/parallel.py:72)     for delayed_func, args, kwargs in iterable
     [73](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/utils/parallel.py:73) )
---> [74](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/sklearn/utils/parallel.py:74) return super().__call__(iterable_with_config)

File ~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1918, in Parallel.__call__(self, iterable)
   [1916](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1916)     output = self._get_sequential_output(iterable)
   [1917](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1917)     next(output)
-> [1918](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1918)     return output if self.return_generator else list(output)
   [1920](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1920) # Let's create an ID that uniquely identifies the current call. If the
   [1921](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1921) # call is interrupted early and that the same instance is immediately
   [1922](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1922) # re-used, this id will be used to prevent workers that were
   [1923](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1923) # concurrently finalizing a task from the previous call to run the
   [1924](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1924) # callback.
   [1925](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1925) with self._lock:

File ~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1847, in Parallel._get_sequential_output(self, iterable)
   [1845](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1845) self.n_dispatched_batches += 1
   [1846](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1846) self.n_dispatched_tasks += 1
-> [1847](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1847) res = func(*args, **kwargs)
   [1848](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1848) self.n_completed_tasks += 1
   [1849](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/joblib/parallel.py:1849) self.print_progress()
...
    [324](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/tree/_classes.py:324)             ]
    [325](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/tree/_classes.py:325) else:
    [326](https://file+.vscode-resource.vscode-cdn.net/Users/ben.pedigo/code/meshrep/~/code/meshrep/meshrep/.venv/lib/python3.11/site-packages/treeple/_lib/sklearn/tree/_classes.py:326)     for k in range(self.n_outputs_):

IndexError: index 0 is out of bounds for axis 0 with size 0

Environment

OS: Mac

Python version: 3.11
Treeple 0.9.1

@bdpedigo bdpedigo added the bug Something isn't working label Sep 27, 2024
@adam2392
Copy link
Collaborator

adam2392 commented Oct 1, 2024

Hey @bdpedigo thanks for reporting the issue. So the PatchObliquDTC could be rewritten. There are some weird issues because I implemented it in a naive way. In addition, partial_fit is an experimental feature we added that hasn't been fully tested.

To understand the bug, does fit work?

@bdpedigo
Copy link
Author

bdpedigo commented Oct 1, 2024

fit does work yes!

@bdpedigo
Copy link
Author

bdpedigo commented Oct 1, 2024

in the example I posted I think it fails when I pass in classes as well, but it was working without that

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

2 participants