-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy path0912-sort-an-array.cs
63 lines (54 loc) · 2.46 KB
/
0912-sort-an-array.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
public class Solution {
private int[] aux; // Auxiliary array for merging
/// <summary>
/// Sorts the input array using the classical merge sort algorithm. Uses
/// aux array to save space instead of keeping copies of all array segments
/// </summary>
/// <param name="nums">The input array of integers to be sorted</param>
/// <returns>The sorted array of integers</returns>
public int[] SortArray(int[] nums)
{
// Optimization: early return for empty arrays or arrays with one element
if (nums == null || nums.Length <= 1) return nums;
aux = new int[nums.Length];
MergeSort(nums, 0, nums.Length - 1);
return nums;
}
/// <summary>
/// Recursively divides and merges the array segments
/// </summary>
/// <param name="nums">The input array of integers to be sorted</param>
/// <param name="left">The start index of the segment to be sorted</param>
/// <param name="right">The end index of the segment to be sorted</param>
private void MergeSort(int[] nums, int left, int right)
{
// Base case: return when left has crossed right
if (left >= right) return;
// Get new mid to halve the array segment
int mid = (left + right) / 2;
// Sort the first and the second halves
MergeSort(nums, left, mid);
MergeSort(nums, mid + 1, right);
// Copy to aux[]
for (int k = left; k <= right; k++)
{
aux[k] = nums[k];
}
// Merge back to nums[]
// two pointers to help merge
int i = left, j = mid + 1;
for (int k = left; k <= right; k++)
{
// If current left has crossed mid, nums Kth value should be current jth of aux; j++
// Implies all the left elements have been merged; now we just add the remaining right elements, one by one, in order.
if (i > mid) nums[k] = aux[j++];
// Else if current j has crossed right, nums kth value should be ith of aux; i++
// Implies all the right elements have been merged; now we just add the remaining left elements, one by one, in order.
else if (j > right) nums[k] = aux[i++];
// Else if ith value is greater than jth value in aux, nums kth value should be jth of aux; j++
else if (aux[i] > aux[j]) nums[k] = aux[j++];
// Else nums[k] is the left most unsorted value; i++
else nums[k] = aux[i++];
}
}
}