-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy path1584-Min-Cost-To-Connect-All-Points.cpp
54 lines (43 loc) · 1.53 KB
/
1584-Min-Cost-To-Connect-All-Points.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/*
Given array of points, return min cost to connect all points
All points have 1 path b/w them, cost is Manhattan distance
MST problem, Prim's, greedily pick node not in MST & has smallest edge cost
Add to MST, & for all its neighbors, try to update min dist values, repeat
Time: O(n^2)
Space: O(n)
*/
class Solution {
public:
int minCostConnectPoints(vector<vector<int>>& points) {
int n = points.size();
int edgesUsed = 0;
// track visited nodes
vector<bool> inMST(n);
vector<int> minDist(n, INT_MAX);
minDist[0] = 0;
int result = 0;
while (edgesUsed < n) {
int currMinEdge = INT_MAX;
int currNode = -1;
// greedily pick lowest cost node not in MST
for (int i = 0; i < n; i++) {
if (!inMST[i] && currMinEdge > minDist[i]) {
currMinEdge = minDist[i];
currNode = i;
}
}
result += currMinEdge;
edgesUsed++;
inMST[currNode] = true;
// update adj nodes of curr node
for (int i = 0; i < n; i++) {
int cost = abs(points[currNode][0] - points[i][0])
+ abs(points[currNode][1] - points[i][1]);
if (!inMST[i] && minDist[i] > cost) {
minDist[i] = cost;
}
}
}
return result;
}
};