-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlosses.py
65 lines (53 loc) · 2.39 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import tensorflow as tf
import numpy as np
def l1_loss(preds, tars):
mask = tf.greater(tf.abs(tars), 0)
residuals = tf.boolean_mask(tars - preds, mask)
mae = tf.reduce_mean(tf.abs(residuals))
return mae
def mse_loss(preds, tars, mask):
residuals = tf.boolean_mask(tars - preds, tf.greater(mask, 0))
mse = tf.reduce_mean(tf.pow(residuals, 2))
return mse
def mae_loss(preds, tars, mask):
residuals = tf.boolean_mask(tars - preds, tf.greater(mask, 0))
mae = tf.reduce_mean(tf.abs(residuals))
return mae
def rmse_loss(preds, tars, mask):
counts = tf.reduce_sum(mask, axis=[1,2,3], keep_dims=True)
errors = tf.reduce_sum(tf.pow((tars - preds)*mask, 2), axis=[1,2,3], keep_dims=True)
return tf.reduce_mean(tf.sqrt(errors/counts))
def mre_loss(preds, tars, mask):
residuals = tf.boolean_mask(tars - preds, tf.greater(mask, 0))
tars_masked = tf.boolean_mask(tars, tf.greater(mask, 0))
return tf.reduce_mean(tf.abs(residuals/(tars_masked + 1e-6)))
def given_l1_loss(preds, images):
given = images[:, :, :, 3]
given_mae = l1_loss(preds, tf.expand_dims(given, 3))
return given_mae
def weight_decay_loss():
wd_loss = tf.add_n([ tf.nn.l2_loss(v) for v in tf.trainable_variables()
if 'kernel']) * 0.0001
return wd_loss
def deltas(preds, tars, mask, thresh):
preds_masked = tf.boolean_mask(preds, tf.greater(mask, 0))
tars_masked = tf.boolean_mask(tars, tf.greater(mask, 0))
rel = tf.maximum(preds_masked/tars_masked, tars_masked/(preds_masked+1e-3))
N = tf.reduce_sum(mask)
def del_i(i):
return tf.reduce_mean(tf.cast(tf.less(rel, thresh ** i), tf.float32))
return del_i(1), del_i(2), del_i(3)
def del_i(preds_arr, tars_arr, thresh):
mask = np.abs(tars_arr) > 0
rel = np.maximum(preds_arr[mask]/tars_arr[mask], tars_arr[mask]/preds_arr[mask])
N = np.sum(mask)
return np.sum(rel < thresh)/N, np.sum(rel < thresh ** 2)/N, np.sum(rel < thresh ** 3)/N
def scale(preds, tars):
mask = tf.cast(tf.greater(tf.abs(tars), 0), tf.float32)
s = (tf.reduce_sum(preds * tars, axis=[1, 2, 3], keep_dims=True) /
tf.reduce_sum(preds * preds * mask, axis=[1,2,3], keep_dims=True))
return s*preds
def scale_inv_l2_loss(preds, tars):
mask = tf.cast(tf.greater(tf.abs(tars), 0), tf.float32)
spreds = scale(preds, tars)
return tf.reduce_mean(tf.pow((spreds - tars)*mask, 2))