-
Notifications
You must be signed in to change notification settings - Fork 10
/
tests.txt
349 lines (281 loc) · 9.36 KB
/
tests.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#IMPORTANT: The parser parses - as a negate operator and _ as the subtract operator. Think of the difference on the ti calculator.
#For example; 3-5 will evaluate to 3 * -5 = -15 (Try this on your calculator; it works)
#3_5 will evaluate to -2
#Shoutout to wolfram alpha for helping evaluate these lmao
#Evaluate constants
simplify; 1923847 + 129384 + 39872 + 92873; 2185976
simplify; 8932 _ 29382398 _ 2983892 _ 2983298 _ 9238 _ 298; -35350192
simplify; 23 + 2982398 _ 098473 + 92832 _ 9823 + 92382; 3059339
simplify; 2398759281 * 128974109 * 1290831 * -29382; -11733834149364160952211672018
simplify; 9087123 / 92813749081 / 981 / 91283; 3029041/2770447808557021821
simplify; 238932918457 * 098234 / 2982398 * 09238 / 2398 / 92838923; 54207051211882554311/165991129657273723
simplify; 3 + 3/2; 9/2
simplify; 3 + 3/2 + 5/4; 23/4
simplify; 13/3 + 432/23 + 23/4534 _ 24/455; 3283650931/142344930
simplify; 2308923 ^ 23; 228253448800248422382839314862503628377253091439771292143944853074575569935094601836903968561973397828129853500717494518706509240578306118071046867
simplify; 10!; 3628800
simplify; abs(-5); 5
simplify; abs(-23.2); 23.2
simplify; abs(324); 324
simplify; int(2.2); 2
simplify; int(-2.2); -3
simplify; abs(int(-2.2)); 3
simplify; int(int(int(int(-2.3)))); -3
simplify; 8540 + 283 * 9283 / 21893 ^ (2 + 3) _ 43 + -3 * 2 * abs(-1) * abs(1) / int(-2.2); 42745875306876473429924896/5029518214716610592693
#Already simplified
simplify; A+B+C; A+B+C
simplify; sin(ln(ln(ln(X)+1)+1)+1)+1; sin(ln(ln(ln(X)+1)+1)+1)+1
simplify; A*B+C_D; A*B+C_D
#Like terms
simplify; 2X + X; 3X
simplify; X + X + X; 3X
simplify; X^2 + X^3; X^2 + X^3
simplify; 4X^2 + 6X^2; 10X^2
simplify; sin(X^3 _ cos(X)) + 3sin(-cos(X) + X^3); 4sin(X^3 _ cos(X))
simplify; XXX; X^3
simplify; X^3 * 2X^49; 2X^52
simplify; 1sin(XX)^3 * 5sin(X^2) + sin(X^2); 5sin(X^2)^4 + sin(X^2)
simplify; A_A; 0
simplify; A + B _ (A + B); 0
simplify; A + B _ 2(A _ B); 3B _ A
#Identities; definition
simplify; A^logb(B,A; B
simplify; logb(A^B,A; B
simplify; logb(A,A; 1
simplify; logb(X,B)+logb(Y,B; logb(XY,B
simplify; logb(X,B)_logb(Y,B; logb(X/Y,B
simplify; logb(X^D,B; Dlogb(X,B
simplify; (ArootB)^A; B
simplify; Aroot(B^A); B
simplify; sin(asin(X; X
simplify; asin(sin(X; X
simplify; cos(acos(X; X
simplify; acos(cos(X; X
simplify; tan(atan(X; X
simplify; atan(tan(X; X
simplify; cos(asin(X; sqrt(1_X^2
simplify; cos(atan(X; 1/sqrt(1+X^2
simplify; sin(acos(X; sqrt(1_X^2
simplify; sin(atan(X; X/sqrt(1+X^2
simplify; tan(acos(X; sqrt(1_X^2)/X
simplify; tan(asin(X; X/(sqrt(1_X^2
simplify; sinh(asinh(X; X
simplify; asinh(sinh(X; X
simplify; cosh(acosh(X; X
simplify; tanh(atanh(X; X
simplify; atanh(tanh(X; X
simplify; sin(X)/cos(X; tan(X
simplify; 5sin(X)/(3cos(X)); 5tan(X)/3
simplify; cos(X)/sin(X; 1/tan(X
simplify; 3cos(X)/(Bsin(X)); 3/(Btan(X))
simplify; Atan(X)cos(X; Asin(X
simplify; Asin(X)/(Btan(X; Acos(X)/B
simplify; sin(pi/2_X; cos(X
simplify; cos(pi/2_X; sin(X
simplify; sin(X+16pi; sin(X
simplify; sin(X+2pi; sin(X
simplify; cos(X+22pi; cos(X
simplify; cos(X+2pi; cos(X
simplify; tan(X+4pi; tan(X
simplify; tan(X+pi; tan(X
simplify; sin(-X; -sin(X
simplify; cos(-X; cos(X
simplify; tan(-X; -tan(X
simplify; 2sin(X)cos(X; sin(2X
simplify; cos(X)^2_sin(X)^2; cos(2X
simplify; 2cos(X)^2_1; cos(2X
simplify; 1_2sin(X)^2; cos(2X
simplify; sin(X)^2+cos(X)^2; 1
#Identities trig constants
simplify; sin(0; 0
simplify; sin(pi/6; 1/2
simplify; sin(pi/4; sqrt(2)/2
simplify; sin(pi/3; sqrt(3)/2
simplify; sin(pi/2; 1
simplify; sin(2pi/3; sqrt(3)/2
simplify; sin(3pi/4; sqrt(2)/2
simplify; sin(5pi/6; 1/2
simplify; sin(pi; 0
simplify; sin(7pi/6; -1/2
simplify; sin(5pi/4; -sqrt(2)/2
simplify; sin(4pi/3; -sqrt(3)/2
simplify; sin(3pi/2; -1
simplify; sin(5pi/3; -sqrt(3)/2
simplify; sin(7pi/4; -sqrt(2)/2
simplify; sin(11pi/6; -1/2
simplify; cos(0; 1
simplify; cos(pi/6; sqrt(3)/2
simplify; cos(pi/4; sqrt(2)/2
simplify; cos(pi/3; 1/2
simplify; cos(pi/2; 0
simplify; cos(2pi/3; -1/2
simplify; cos(3pi/4; -sqrt(2)/2
simplify; cos(5pi/6; -sqrt(3)/2
simplify; cos(pi; -1
simplify; cos(7pi/6; -sqrt(3)/2
simplify; cos(5pi/4; -sqrt(2)/2
simplify; cos(4pi/3; -1/2
simplify; cos(3pi/2; 0
simplify; cos(5pi/3; 1/2
simplify; cos(7pi/4; sqrt(2)/2
simplify; cos(11pi/6; sqrt(3)/2
simplify; tan(0; 0
simplify; tan(pi/6; sqrt(3)/3
simplify; tan(pi/4; 1
simplify; tan(pi/3; sqrt(3)
simplify; tan(2pi/3; -sqrt(3
simplify; tan(3pi/4; -1
simplify; tan(5pi/6; -sqrt(3)/3
simplify; tan(pi; 0
simplify; tan(7pi/6; sqrt(3)/3
simplify; tan(5pi/4; 1
simplify; tan(4pi/3; sqrt(3
simplify; tan(5pi/3; -sqrt(3
simplify; tan(7pi/4; -1
simplify; tan(11pi/6; -sqrt(3)/3
#Periodic tests
simplify; sin(9pi/4); sqrt(2)/2
simplify; cos(59pi/6); sqrt(3)/2
simplify; tan(73pi/6); sqrt(3)/3
#Trig inverse tests
simplify; asin(-1; -pi/2
simplify; asin(-sqrt(3)/2; -pi/3
simplify; asin(-sqrt(2)/2; -pi/4
simplify; asin(-1/2; -pi/6
simplify; asin(0; 0
simplify; asin(1/2; pi/6
simplify; asin(sqrt(2)/2; pi/4
simplify; asin(sqrt(3)/2; pi/3
simplify; asin(1; pi/2
simplify; acos(-1; pi
simplify; acos(-sqrt(3)/2; 5pi/6
simplify; acos(-sqrt(2)/2; 3pi/4
simplify; acos(-1/2; 2pi/3
simplify; acos(0; pi/2
simplify; acos(1/2; pi/3
simplify; acos(sqrt(2)/2; pi/4
simplify; acos(sqrt(3)/2; pi/6
simplify; acos(1; 0
simplify; atan(-sqrt(3; -pi/3
simplify; atan(-1; -pi/4
simplify; atan(-1/sqrt(3; -pi/6
simplify; atan(0; 0
simplify; atan(1/sqrt(3; pi/6
simplify; atan(1; pi/4
simplify; atan(sqrt(3; pi/3
#Identities, comprehensive
simplify; sin(ln(X))^2 + cos(ln(X))^2 + 1 _ 2sin(X/2)^2 _ 1; cos(X)
simplify; sin(ln(X) + 1)^2 + cos(ln(X))^2; sin(ln(X) + 1)^2 + cos(ln(X))^2
simplify; 1 _ 2sin(X)^2 + 2cos(X)^2_1 + 2sin(1)cos(sin(X)^2+cos(X)^2); 2cos(2X) + sin(2)
simplify; 2sin(sqrt(3))^2 + 2cos(sqrt(3))^2; 2
simplify; ln(2sin(pi/3)) + ln(cos(pi/3)); ln(sqrt(3)/2
simplify; ln(ln(e^ln(2))); ln(ln(2))
simplify; ln(e); 1
simplify; e^(5ln(X); X^5
simplify; ln(e^5); 5
simplify; ln(5^9); 9ln(5)
simplify; sin(X + 4pi + 5); sin(X + 5)
simplify; sin(X _ 2pi + 3pi); sin(X + pi)
simplify; sin(X _ 8pi); sin(X)
#Hyperbolic tests
simplify; sinh(X)/cosh(X; tanh(X
simplify; cosh(X)^2_sinh(X)^2; 1
#Imaginary tests
simplify; abs(I+Ji; sqrt(I^2+J^2
simplify; abs(Ji; J
simplify; abs(i; 1
simplify; ln(i; ipi/2
simplify; sin(I+Ji; sin(I)cosh(J)+icos(I)sinh(J
simplify; sin(Ji; isinh(J
simplify; sin(i; isinh(1
simplify; cos(I+Ji; cos(I)cosh(J)_isin(I)sinh(J)
simplify; cos(Ji; cosh(J)
simplify; cos(i; cosh(1
simplify; e^(iX; cos(X)+isin(X
#These identities are simplified twice
simplify; (I+Ji)^X; cos(Xatan(J/I))(I^2+J^2)^(X/2)+(I^2+J^2)^(X/2)isin(Xatan(J/I))
simplify; X^(I+Ji; cos(ln(X)J)X^I+X^Iisin(ln(X)J)
#HOW I cannot believe these actually work
simplify; i^i; 1/e^(pi/2)
simplify; e^(ipi); -1
simplify; 1/i^(2i/pi; e
simplify; sin(5i + A + B); sin(A+B)cosh(5)+icos(A+B)sinh(5)
simplify; sin(5A + B^2 + C + DEFi); sin(5A+B^2+C)cosh(DEF)+icos(5A+B^2+C)sinh(DEF)
simplify; i^0; 1
simplify; i^1; i
simplify; i^2; -1
simplify; i^3; -i
simplify; i^4; 1
simplify; i^5; i
simplify; i^6; -1
simplify; i^7; -i
simplify; 1/i; -i
simplify; sqrt(2+i); (4root5)cos(atan(1/2)/2)+i(4root5)sin(atan(1/2)/2)
simplify e^(ipi/2); i
simplify; sin(X) + deriv(X^2, X, X); sin(X) + 2X
simplify; Xderiv(sin(X),X,pi); -X
#Factoring tests
factor; sin(abs(X^2 _ 1) _ 1) + 3sin(abs(X^2 _ 1) _ 1)^4; sin(abs(X^2 _ 1) _ 1)(1 + 3sin(abs(X^2 _ 1) _ 1)^3)
factor; 3X^2 + 6X + 1; 3X(X + 2) + 1
factor; 14(AX)^2 + 2X; 2X(7A^2X + 1)
factor; AA+AB; A(A+B)
factor; A+B+C+D+E+F+G; A+B+C+D+E+F+G
factor; 2A+2; 2(A + 1)
factor; A/2 + B/2; (A+B)/2
#GCD tests
gcd; X^3; X; X
gcd; sin(X)^2; sin(X); sin(X)
gcd; 345abs(5)X; 12X; 3X
gcd; 12; 18; 6
gcd; (X+3)(X_5); X+3; X+3
gcd; (2sin(cos(X^3))^4) * 14sin(cos(X^3)); 2sin(cos(X^3)); 2sin(cos(X^3))
gcd; (10XA)^3; 144A; 8A
gcd; X(X+3); (AX)^2; X
gcd; sin(X)ln(X) + 1; sin(X); 1
gcd; pi/4; 2pi; pi
gcd; A/2; B/2; 1/2
#Expand tests
expand; (X+3)^5; 243 + 405 X + 270 X^2 + 90 X^3 + 15 X^4 + X^5
expand; (X+1)^8; X^8 + 8X^7 + 28X^6 + 56X^5 +70X^4 + 56X^3 + 28X^2 + 8X + 1
expand; (AX)^5; A^5 * X^5
expand ((A + B)^5 + 1)^4; 1+2 A^4+A^8+8 A^3 B+8 A^7 B+12 A^2 B^2+28 A^6 B^2+8 A B^3+56 A^5 B^3+2 B^4+70 A^4 B^4+56 A^3 B^5+28 A^2 B^6+8 A B^7+B^8
expand; AB(X+1); ABX + AB
expand; (A + B)(B + C); AB + AC + B^2 + BC
expand; (ABC)^6; A^6B^6C^6
expand; (A+B)(C+B)^2; AC^2+AB^2+BC^2+2ABC+2CB^2+B^3
expand; (A+B)^3(B+1)^3; 3AB^5+3A^2B^4+9A^2B^3+9AB^4+3A^3B^2+B^6+3BA^3+3BA^2+3B^5+9AB^3+3B^4+3AB^2+9A^2B^2+A^3+B^3+A^3B^3
#Derivative tests
deriv; X; X; 1
deriv; sin(X)/ln(X); X; (-sin(X))/(Xln(X)^2)+cos(X)/ln(X)
deriv; e^(5X); X; 5e^(5X);
deriv; X^X; X; X^X+ln(X)X^X
deriv; ln(X); X; 1/X
#log base 3 of X
deriv; logb(X,3); X; 1/(Xln(3))
#log base X of 3
deriv; logb(3,X); X; -ln(3)/(Xln(X)^2)
deriv; sin(X); X; cos(X)
deriv; cos(X); X; -sin(X)
deriv; tan(X); X; 1/cos(X)^2
deriv; asin(X); X; 1/sqrt(1_X^2)
deriv; acos(X); X; -1/sqrt(1_X^2)
deriv; atan(X); X; 1/(1+X^2)
deriv; sinh(X); X; cosh(X)
deriv; cosh(X); X; sinh(X)
deriv; tanh(X); X; 1/cosh(X)^2
deriv; asinh(X); X; 1/sqrt(X^2+1)
deriv; acosh(X); X; 1/sqrt(X^2_1)
deriv; atanh(X); X; 1/(1_X^2)
deriv; X^5; X; 5X^4
deriv; sin(X); A; 0
deriv; 5X; X; 5
deriv; sin(X)ln(X); X; sin(X)/X+ln(X)cos(X)
deriv; sin(X)cos(X); X; cos(2X)
deriv; sin(X) + cos(X) + ln(X); X; 1/X_sin(X)+cos(X)
deriv; sin(sin(sin(X))); X; cos(X)cos(sin(X))cos(sin(sin(X)))
deriv; deriv(X, X, X); X; 0
deriv; 5X + deriv(X^2, X, X); X; 7
#Thanks Hamza.S on TI-Planet
deriv; 18X/9 _ 8/2; X; 2
deriv; (20 * 2)/X * 3*5X; X; 0
deriv; 5 + 3X + X^2 _ 13/2X/X + sin(X)*3; X; 3 + 2X + 3cos(X)