forked from NVlabs/GroupViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_group_vit.py
460 lines (391 loc) · 18.7 KB
/
main_group_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# -------------------------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE
#
# Written by Ze Liu, Zhenda Xie
# Modified by Jiarui Xu
# -------------------------------------------------------------------------
import argparse
import datetime
import os
import os.path as osp
import time
from collections import defaultdict
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
from datasets import build_loader, build_text_transform, imagenet_classes
from mmcv.parallel import MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, set_random_seed
from mmcv.utils import collect_env, get_git_hash
from mmseg.apis import multi_gpu_test
from models import build_model
from omegaconf import OmegaConf, read_write
from segmentation.evaluation import build_seg_dataloader, build_seg_dataset, build_seg_inference
from timm.utils import AverageMeter, accuracy
from utils import (auto_resume_helper, build_dataset_class_tokens, build_optimizer, build_scheduler, data2cuda,
get_config, get_grad_norm, get_logger, load_checkpoint, parse_losses, reduce_tensor, save_checkpoint)
try:
# noinspection PyUnresolvedReferences
from apex import amp
except ImportError:
amp = None
def parse_args():
parser = argparse.ArgumentParser('GroupViT training and evaluation script')
parser.add_argument('--cfg', type=str, required=True, help='path to config file')
parser.add_argument('--opts', help="Modify config options by adding 'KEY=VALUE' list. ", default=None, nargs='+')
# easy config modification
parser.add_argument('--batch-size', type=int, help='batch size for single GPU')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument(
'--amp-opt-level',
type=str,
default='O1',
choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument(
'--output', type=str, help='root of output folder, '
'the full path is <output>/<model_name>/<tag>')
parser.add_argument('--tag', type=str, help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--wandb', action='store_true', help='Use W&B to log experiments')
parser.add_argument('--keep', type=int, help='Maximum checkpoint to keep')
# distributed training
parser.add_argument('--local_rank', type=int, required=True, help='local rank for DistributedDataParallel')
args = parser.parse_args()
return args
def train(cfg):
if cfg.wandb and dist.get_rank() == 0:
import wandb
wandb.init(
project='group_vit',
name=osp.join(cfg.model_name, cfg.tag),
dir=cfg.output,
config=OmegaConf.to_container(cfg, resolve=True),
resume=cfg.checkpoint.auto_resume)
else:
wandb = None
# waiting wandb init
dist.barrier()
dataset_train, dataset_val, \
data_loader_train, data_loader_val = build_loader(cfg.data)
data_loader_seg = build_seg_dataloader(build_seg_dataset(cfg.evaluate.seg))
logger = get_logger()
logger.info(f'Creating model:{cfg.model.type}/{cfg.model_name}')
model = build_model(cfg.model)
model.cuda()
logger.info(str(model))
optimizer = build_optimizer(cfg.train, model)
if cfg.train.amp_opt_level != 'O0':
model, optimizer = amp.initialize(model, optimizer, opt_level=cfg.train.amp_opt_level)
model = MMDistributedDataParallel(model, device_ids=[torch.cuda.current_device()], broadcast_buffers=False)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f'number of params: {n_parameters}')
lr_scheduler = build_scheduler(cfg.train, optimizer, len(data_loader_train))
if cfg.checkpoint.auto_resume:
resume_file = auto_resume_helper(cfg.output)
if resume_file:
if cfg.checkpoint.resume:
logger.warning(f'auto-resume changing resume file from {cfg.checkpoint.resume} to {resume_file}')
with read_write(cfg):
cfg.checkpoint.resume = resume_file
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(f'no checkpoint found in {cfg.output}, ignoring auto resume')
max_accuracy = max_miou = 0.0
max_metrics = {'max_accuracy': max_accuracy, 'max_miou': max_miou}
if cfg.checkpoint.resume:
max_metrics = load_checkpoint(cfg, model_without_ddp, optimizer, lr_scheduler)
max_accuracy, max_miou = max_metrics['max_accuracy'], max_metrics['max_miou']
if 'cls' in cfg.evaluate.task:
acc1, acc5, loss = validate_cls(cfg, data_loader_val, model)
logger.info(f'Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%')
if 'seg' in cfg.evaluate.task:
miou = validate_seg(cfg, data_loader_seg, model)
logger.info(f'mIoU of the network on the {len(data_loader_seg.dataset)} test images: {miou:.2f}%')
if cfg.evaluate.eval_only:
return
logger.info('Start training')
start_time = time.time()
for epoch in range(cfg.train.start_epoch, cfg.train.epochs):
loss_train_dict = train_one_epoch(cfg, model, data_loader_train, optimizer, epoch, lr_scheduler)
if dist.get_rank() == 0 and (epoch % cfg.checkpoint.save_freq == 0 or epoch == (cfg.train.epochs - 1)):
save_checkpoint(cfg, epoch, model_without_ddp, {
'max_accuracy': max_accuracy,
'max_miou': max_miou
}, optimizer, lr_scheduler)
dist.barrier()
loss_train = loss_train_dict['total_loss']
logger.info(f'Avg loss of the network on the {len(dataset_train)} train images: {loss_train:.2f}')
# evaluate
if (epoch % cfg.evaluate.eval_freq == 0 or epoch == (cfg.train.epochs - 1)):
if 'cls' in cfg.evaluate.task:
acc1, acc5, loss = validate_cls(cfg, data_loader_val, model)
logger.info(f'Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%')
max_metrics['max_accuracy'] = max(max_metrics['max_accuracy'], acc1)
if cfg.evaluate.cls.save_best and dist.get_rank() == 0 and acc1 > max_accuracy:
save_checkpoint(
cfg, epoch, model_without_ddp, max_metrics, optimizer, lr_scheduler, suffix='best_acc1')
dist.barrier()
max_accuracy = max_metrics['max_accuracy']
logger.info(f'Max accuracy: {max_accuracy:.2f}%')
if 'seg' in cfg.evaluate.task:
miou = validate_seg(cfg, data_loader_seg, model)
logger.info(f'mIoU of the network on the {len(data_loader_seg.dataset)} test images: {miou:.2f}%')
max_metrics['max_miou'] = max(max_metrics['max_miou'], miou)
if cfg.evaluate.seg.save_best and dist.get_rank() == 0 and miou > max_miou:
save_checkpoint(
cfg, epoch, model_without_ddp, max_metrics, optimizer, lr_scheduler, suffix='best_miou')
dist.barrier()
max_miou = max_metrics['max_miou']
logger.info(f'Max mIoU: {max_miou:.2f}%')
if wandb is not None:
log_stat = {f'epoch/train_{k}': v for k, v in loss_train_dict.items()}
log_stat.update({
'epoch/val_acc1': acc1,
'epoch/val_acc5': acc5,
'epoch/val_loss': loss,
'epoch/val_miou': miou,
'epoch/epoch': epoch,
'epoch/n_parameters': n_parameters
})
wandb.log(log_stat)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
dist.barrier()
def train_one_epoch(config, model, data_loader, optimizer, epoch, lr_scheduler):
logger = get_logger()
dist.barrier()
model.train()
optimizer.zero_grad()
if config.wandb and dist.get_rank() == 0:
import wandb
else:
wandb = None
num_steps = len(data_loader)
batch_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = AverageMeter()
log_vars_meters = defaultdict(AverageMeter)
start = time.time()
end = time.time()
for idx, samples in enumerate(data_loader):
batch_size = config.data.batch_size
losses = model(**samples)
loss, log_vars = parse_losses(losses)
if config.train.accumulation_steps > 1:
loss = loss / config.train.accumulation_steps
if config.train.amp_opt_level != 'O0':
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
if config.train.clip_grad:
grad_norm = torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), config.train.clip_grad)
else:
grad_norm = get_grad_norm(amp.master_params(optimizer))
else:
loss.backward()
if config.train.clip_grad:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.train.clip_grad)
else:
grad_norm = get_grad_norm(model.parameters())
if (idx + 1) % config.train.accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step_update(epoch * num_steps + idx)
else:
optimizer.zero_grad()
if config.train.amp_opt_level != 'O0':
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
if config.train.clip_grad:
grad_norm = torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), config.train.clip_grad)
else:
grad_norm = get_grad_norm(amp.master_params(optimizer))
else:
loss.backward()
if config.train.clip_grad:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.train.clip_grad)
else:
grad_norm = get_grad_norm(model.parameters())
optimizer.step()
lr_scheduler.step_update(epoch * num_steps + idx)
torch.cuda.synchronize()
loss_meter.update(loss.item(), batch_size)
for loss_name in log_vars:
log_vars_meters[loss_name].update(log_vars[loss_name], batch_size)
norm_meter.update(grad_norm)
batch_time.update(time.time() - end)
end = time.time()
if idx % config.print_freq == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
log_vars_str = '\t'.join(f'{n} {m.val:.4f} ({m.avg:.4f})' for n, m in log_vars_meters.items())
logger.info(f'Train: [{epoch}/{config.train.epochs}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'total_loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'{log_vars_str}\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
f'mem {memory_used:.0f}MB')
if wandb is not None:
log_stat = {f'iter/train_{n}': m.avg for n, m in log_vars_meters.items()}
log_stat['iter/train_total_loss'] = loss_meter.avg
log_stat['iter/learning_rate'] = lr
wandb.log(log_stat)
epoch_time = time.time() - start
logger.info(f'EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}')
result_dict = dict(total_loss=loss_meter.avg)
for n, m in log_vars_meters.items():
result_dict[n] = m.avg
dist.barrier()
return result_dict
@torch.no_grad()
def validate_cls(config, data_loader, model):
logger = get_logger()
dist.barrier()
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
text_transform = build_text_transform(False, config.data.text_aug, with_dc=False)
end = time.time()
logger.info('Building zero shot classifier')
text_embedding = data2cuda(
model.module.build_text_embedding(
build_dataset_class_tokens(text_transform, config.evaluate.cls.template, imagenet_classes)))
logger.info('Zero shot classifier built')
for idx, samples in enumerate(data_loader):
target = samples.pop('target').data[0].cuda()
target = data2cuda(target)
# compute output
output = model(**samples, text=text_embedding)
# measure accuracy and record loss
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.print_freq == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
logger.info('Clearing zero shot classifier')
torch.cuda.empty_cache()
logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
dist.barrier()
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
@torch.no_grad()
def validate_seg(config, data_loader, model):
logger = get_logger()
dist.barrier()
model.eval()
if hasattr(model, 'module'):
model_without_ddp = model.module
else:
model_without_ddp = model
text_transform = build_text_transform(False, config.data.text_aug, with_dc=False)
seg_model = build_seg_inference(model_without_ddp, data_loader.dataset, text_transform, config.evaluate.seg)
mmddp_model = MMDistributedDataParallel(
seg_model, device_ids=[torch.cuda.current_device()], broadcast_buffers=False)
mmddp_model.eval()
results = multi_gpu_test(
model=mmddp_model,
data_loader=data_loader,
tmpdir=None,
gpu_collect=True,
efficient_test=False,
pre_eval=True,
format_only=False)
if dist.get_rank() == 0:
metric = [data_loader.dataset.evaluate(results, metric='mIoU')]
else:
metric = [None]
dist.broadcast_object_list(metric)
miou_result = metric[0]['mIoU'] * 100
torch.cuda.empty_cache()
logger.info(f'Eval Seg mIoU {miou_result:.2f}')
dist.barrier()
return miou_result
def main():
args = parse_args()
cfg = get_config(args)
if cfg.train.amp_opt_level != 'O0':
assert amp is not None, 'amp not installed!'
# start faster ref: https://github.com/open-mmlab/mmdetection/pull/7036
mp.set_start_method('fork', force=True)
init_dist('pytorch')
rank, world_size = get_dist_info()
print(f'RANK and WORLD_SIZE in environ: {rank}/{world_size}')
dist.barrier()
set_random_seed(cfg.seed, use_rank_shift=True)
cudnn.benchmark = True
os.makedirs(cfg.output, exist_ok=True)
logger = get_logger(cfg)
# linear scale the learning rate according to total batch size, may not be optimal
linear_scaled_lr = cfg.train.base_lr * cfg.data.batch_size * world_size / 4096.0
linear_scaled_warmup_lr = cfg.train.warmup_lr * cfg.data.batch_size * world_size / 4096.0
linear_scaled_min_lr = cfg.train.min_lr * cfg.data.batch_size * world_size / 4096.0
# gradient accumulation also need to scale the learning rate
if cfg.train.accumulation_steps > 1:
linear_scaled_lr = linear_scaled_lr * cfg.train.accumulation_steps
linear_scaled_warmup_lr = linear_scaled_warmup_lr * cfg.train.accumulation_steps
linear_scaled_min_lr = linear_scaled_min_lr * cfg.train.accumulation_steps
with read_write(cfg):
logger.info(f'Scale base_lr from {cfg.train.base_lr} to {linear_scaled_lr}')
logger.info(f'Scale warmup_lr from {cfg.train.warmup_lr} to {linear_scaled_warmup_lr}')
logger.info(f'Scale min_lr from {cfg.train.min_lr} to {linear_scaled_min_lr}')
cfg.train.base_lr = linear_scaled_lr
cfg.train.warmup_lr = linear_scaled_warmup_lr
cfg.train.min_lr = linear_scaled_min_lr
if dist.get_rank() == 0:
path = os.path.join(cfg.output, 'config.json')
OmegaConf.save(cfg, path)
logger.info(f'Full config saved to {path}')
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line)
logger.info(f'Git hash: {get_git_hash(digits=7)}')
# print config
logger.info(OmegaConf.to_yaml(cfg))
train(cfg)
dist.barrier()
if __name__ == '__main__':
main()