-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathoptions_payoff.py
executable file
·427 lines (368 loc) · 14.3 KB
/
options_payoff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#!/usr/bin/env python3
"""
This Python script generates payoff plots for option trading strategies. It visualizes the potential profit or loss of a set of option contracts at different underlying asset prices.
## Features
- Supports both call and put options
- Handles long and short positions
- Plots initial position and adjusted position
- Displays breakeven points, max profit, and max loss
- Configurable via YAML file
## Usage
1. Create a YAML trade file with your option strategy details.
2. Run the script from the command line, providing the path to your YAML file:
Usage:
python3 options_payoff.py your_trade_file.yaml
Example Trade File:
spot_price: 100
initial_position:
- strike_price: 95
premium: 1.5
contract_type: put
position: short
- strike_price: 90
premium: 0.5
contract_type: put
position: long
- strike_price: 105
premium: 1.5
contract_type: call
position: short
- strike_price: 110
premium: 0.5
contract_type: call
position: long
adjustment: []
"""
from argparse import ArgumentParser
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import yaml
from common import RawTextWithDefaultsFormatter
from common.ib import OptionContract
class OptionPlot:
def __init__(self, options, spot_price):
self.options = options if isinstance(options, list) else [options]
self.spot_price = spot_price
def plot(self, title, show_plot=False):
# Reset the style and create a new figure for each plot
plt.clf()
plt.close("all")
sns.reset_orig()
self.fig, self.ax = plt.subplots(figsize=(14, 8))
sns.set_style("whitegrid")
self.annot = self.ax.annotate(
"",
xy=(0, 0),
xytext=(0, 20),
textcoords="offset points",
bbox=dict(boxstyle="round", fc="w", ec="gray", alpha=0.8),
fontsize=8,
)
self.annot.set_visible(False)
min_strike = min(option.strike_price for option in self.options)
max_strike = max(option.strike_price for option in self.options)
self.strike_range = np.arange(min_strike - 1000, max_strike + 1000, 1)
payoffs = [option.payoff(self.strike_range) for option in self.options]
total_payoff = np.sum(payoffs, axis=0)
breakeven_points = self._plot_breakeven_points(total_payoff)
if len(breakeven_points) > 0:
min_range = min(min(breakeven_points), min_strike) - 100
max_range = max(max(breakeven_points), max_strike) + 100
else:
min_range = min_strike - 50
max_range = max_strike + 50
self.strike_range = np.arange(min_range, max_range, 1)
self._setup_plot(total_payoff)
self._plot_payoff()
self._plot_spot_price()
self._annotate_max_profit_loss()
self._add_option_callouts()
self._set_x_ticks()
self._annotate_combined_value()
if title:
plt.title(title)
plt.tight_layout()
self.fig.canvas.mpl_connect("motion_notify_event", self.hover)
if show_plot:
plt.show()
def update_annot(self, pos):
x, y = pos.xdata, pos.ydata
self.annot.xy = (x, y)
text = f"@ {x:.2f} P/L: {y:.2f})"
self.annot.set_text(text)
def hover(self, event):
vis = self.annot.get_visible()
if event.inaxes == self.ax:
self.annot.set_visible(True)
self.update_annot(event)
self.fig.canvas.draw_idle()
else:
if vis:
self.annot.set_visible(False)
self.fig.canvas.draw_idle()
def _setup_plot(self, total_payoff):
# TODO: Set boundary if it is an unlimited loss/gain
y_min, y_max = min(total_payoff) * 1.1, max(total_payoff) * 1.1
y_range = y_max - y_min
self.ax.set_xlim(self.strike_range[0], self.strike_range[-1])
self.ax.set_ylim(
y_min - y_range * 0.5, y_max + y_range * 0.5
) # Add extra space at top and bottom
self.ax.spines["top"].set_visible(False)
self.ax.spines["right"].set_visible(False)
self.ax.spines["bottom"].set_position("zero")
self.ax.tick_params(axis="both", labelsize=8)
def _plot_payoff(self):
payoffs = [option.payoff(self.strike_range) for option in self.options]
total_payoff = np.sum(payoffs, axis=0)
self.ax.plot(
self.strike_range, total_payoff, color="black", linewidth=1, alpha=0.2
)
self.ax.fill_between(
self.strike_range,
total_payoff,
0,
where=(total_payoff > 0),
facecolor="lightgreen",
alpha=0.5,
)
self.ax.fill_between(
self.strike_range,
total_payoff,
0,
where=(total_payoff < 0),
facecolor="lightcoral",
alpha=0.5,
)
def _plot_spot_price(self):
self.ax.axvline(x=self.spot_price, color="black", linestyle=":", linewidth=1)
self.ax.text(
self.spot_price,
self.ax.get_ylim()[1],
f"{self.spot_price}",
color="black",
ha="center",
va="bottom",
fontsize=8,
)
def _calculate_percentage_change(self, price):
return (price - self.spot_price) / self.spot_price * 100
def _plot_breakeven_points(self, total_payoff):
breakeven_points = self.strike_range[
np.where(np.diff(np.sign(total_payoff)) != 0)[0]
]
for point in breakeven_points:
percentage_change = self._calculate_percentage_change(point)
if point > self.spot_price:
label = f"Breakeven: {point:.2f}\n({percentage_change:.2f}%)"
else:
label = f"Breakeven: {point:.2f}\n({percentage_change:.2f}%)"
self.ax.annotate(
label,
xy=(point, 0),
xytext=(point, self.ax.get_ylim()[1] * 0.2),
color="red",
fontsize=8,
ha="center",
va="bottom",
)
return breakeven_points
def _calculate_max_losses(self):
payoffs = [option.payoff(self.strike_range) for option in self.options]
total_payoff = np.sum(payoffs, axis=0)
downside_max_loss = min(total_payoff[self.strike_range <= self.spot_price])
upside_max_loss = min(total_payoff[self.strike_range >= self.spot_price])
downside_max_loss_price = self.strike_range[total_payoff == downside_max_loss][
0
]
upside_max_loss_price = self.strike_range[total_payoff == upside_max_loss][-1]
return (
downside_max_loss,
downside_max_loss_price,
upside_max_loss,
upside_max_loss_price,
)
def _annotate_max_profit_loss(self):
payoffs = [option.payoff(self.strike_range) for option in self.options]
total_payoff = np.sum(payoffs, axis=0)
max_profit = max(total_payoff)
max_profit_price = self.strike_range[np.argmax(total_payoff)]
(
downside_max_loss,
downside_max_loss_price,
upside_max_loss,
upside_max_loss_price,
) = self._calculate_max_losses()
# Annotate max profit
self.ax.annotate(
f"Max Profit: ${max_profit:.2f}",
xy=(max_profit_price, max_profit),
xytext=(5, 5),
textcoords="offset points",
ha="left",
va="bottom",
fontsize=8,
color="green",
)
# Annotate downside max loss
if downside_max_loss < 0:
self.ax.annotate(
f"Downside Max Loss: ${downside_max_loss:.2f}",
xy=(downside_max_loss_price, downside_max_loss),
xytext=(5, -5),
textcoords="offset points",
ha="left",
va="top",
fontsize=8,
color="red",
)
# Annotate upside max loss
if upside_max_loss < 0:
self.ax.annotate(
f"Upside Max Loss: ${upside_max_loss:.2f}",
xy=(upside_max_loss_price, upside_max_loss),
xytext=(5, -5),
textcoords="offset points",
ha="right",
va="top",
fontsize=8,
color="red",
)
def calculate_combined_value(self, options):
total_value = 0
for option in options:
current_price = (
option.current_options_price
if option.current_options_price != "n/a"
else option.premium
)
option_value = (
(current_price - option.premium)
* 100
* (1 if option.position == "long" else -1)
)
total_value += option_value
print(option.to_yaml())
print(f"Total Combined Value: {total_value}")
print("--" * 50)
return total_value
def _annotate_combined_value(self):
total_value = self.calculate_combined_value(self.options)
self.ax.annotate(
f"Combined Value: ${total_value:.2f}",
xy=(0.5, 1.05),
xycoords="axes fraction",
ha="center",
fontsize=10,
color="blue",
)
def _add_option_callouts(self):
y_min, y_max = self.ax.get_ylim()
y_range = y_max - y_min
base_top_offset = y_range * 0.05 # Base offset above x-axis
base_bottom_offset = -y_range * 0.07 # Base offset below x-axis
vertical_spacing = y_range * 0.03 # Spacing between stacked callouts
# Group options by strike price
strike_groups = {}
for option in self.options:
if option.strike_price not in strike_groups:
strike_groups[option.strike_price] = {"long": [], "short": []}
strike_groups[option.strike_price][option.position].append(option)
for strike, positions in strike_groups.items():
for position_type in ["long", "short"]:
options = positions[position_type]
for i, option in enumerate(options):
contract_type = option.contract_type.capitalize()[0]
current_price = (
f", Now: ${option.current_options_price:.2f}"
if option.current_options_price != "n/a"
else ""
)
label = f"{option.strike_price} {contract_type} (${option.premium}){current_price}"
# Determine color and position based on option type and position
if position_type == "long":
y_offset = base_top_offset + i * vertical_spacing
color = (
"lightgreen"
if option.contract_type == "call"
else "lightcoral"
)
va = "bottom"
ec = "green" if option.contract_type == "call" else "red"
else: # short position
y_offset = base_bottom_offset - i * vertical_spacing
color = (
"lightgreen"
if option.contract_type == "call"
else "lightcoral"
)
va = "top"
ec = "green" if option.contract_type == "call" else "red"
self.ax.annotate(
label,
xy=(strike, 0), # Arrow points to x-axis
xytext=(strike, y_offset),
ha="center",
va=va,
fontsize=8,
bbox=dict(
boxstyle="round,pad=0.3",
fc=color,
ec=ec,
lw=1,
alpha=0.8,
),
arrowprops=dict(arrowstyle="->", color="black", lw=1),
)
# Adjust the plot limits to ensure all callouts are visible
max_stack = max(
len(group["long"] + group["short"]) for group in strike_groups.values()
)
extra_space = max_stack * vertical_spacing
self.ax.set_ylim(y_min - extra_space, y_max + extra_space)
def _set_x_ticks(self):
start = (self.strike_range[0] // 5) * 5
end = (self.strike_range[-1] // 5 + 1) * 5
x_ticks = np.arange(start, end, 10)
self.ax.set_xticks(x_ticks)
self.ax.set_xticklabels([f"{x:g}" for x in x_ticks], rotation=45, ha="right")
def load_config(file_path):
with open(file_path) as file:
config = yaml.safe_load(file)
return config
def create_option_contracts(options_data):
return [
OptionContract(
strike_price=option["strike_price"],
premium=option["premium"],
contract_type=option["contract_type"],
position=option["position"],
current_options_price=option.get("current_options_price", "n/a"),
)
for option in options_data
]
def main():
parser = ArgumentParser(
description=__doc__, formatter_class=RawTextWithDefaultsFormatter
)
parser.add_argument(
"config_file", type=str, help="Path to the YAML configuration file"
)
args = parser.parse_args()
config = load_config(args.config_file)
spot_price = config["spot_price"]
initial_position = create_option_contracts(config["initial_position"])
# Plot initial position
initial_pos = OptionPlot(initial_position, spot_price)
initial_pos.plot("Initial Position", show_plot=True)
current_position = initial_position.copy()
# Plot each adjustment
if "adjustments" in config:
for i, adjustment in enumerate(config["adjustments"], 1):
adjustment_options = create_option_contracts(adjustment["options"])
current_position.extend(adjustment_options)
adjusted_pos = OptionPlot(current_position, spot_price)
adjusted_pos.plot(f"Position after {adjustment['name']}", show_plot=True)
if __name__ == "__main__":
main()