-
Notifications
You must be signed in to change notification settings - Fork 37
/
options_data_analysis.py
executable file
·192 lines (160 loc) · 5.4 KB
/
options_data_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/env -S uv run --quiet --script
# /// script
# dependencies = [
# "numpy",
# "pandas",
# "matplotlib",
# "seaborn",
# ]
# ///
"""
Options data analysis - 3D Visualization
Usage:
./options_data_analysis.py -h
./options_data_analysis.py --db-file path/to/your.db
"""
import logging
import sqlite3
from argparse import ArgumentParser, RawDescriptionHelpFormatter
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def setup_logging(verbosity):
logging_level = logging.WARNING
if verbosity == 1:
logging_level = logging.INFO
elif verbosity >= 2:
logging_level = logging.DEBUG
logging.basicConfig(
handlers=[
logging.StreamHandler(),
],
format="%(asctime)s - %(filename)s:%(lineno)d - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging_level,
)
logging.captureWarnings(capture=True)
def parse_args():
parser = ArgumentParser(
description=__doc__, formatter_class=RawDescriptionHelpFormatter
)
parser.add_argument(
"-v",
"--verbose",
action="count",
default=0,
dest="verbose",
help="Increase verbosity of logging output",
)
parser.add_argument(
"--db-file",
type=Path,
help="Path to the SQLite database file",
required=True,
metavar="PATH",
dest="db_path",
)
args = parser.parse_args()
if not args.db_path.exists():
parser.error(f"The file {args.db_path} does not exist!")
return args
def plot_3d_visualization(df):
# Convert Time to datetime
df["datetime"] = pd.to_datetime(df["Time"])
# Calculate decimal hours
df["hours"] = df["datetime"].dt.hour + df["datetime"].dt.minute / 60
# Create figure
fig = plt.figure(figsize=(12, 8))
# Find min and max hours in the data
min_hour = df["hours"].min()
max_hour = df["hours"].max()
hour_range = max_hour - min_hour
# Determine appropriate interval to show at least 8 points
if hour_range >= 8:
# If range is large enough, use hourly intervals
tick_interval = max(1, hour_range // 8)
tick_positions = np.arange(
np.floor(min_hour / tick_interval) * tick_interval,
np.ceil(max_hour / tick_interval) * tick_interval + 1,
tick_interval,
)
tick_labels = [f"{int(h):02d}:00" for h in tick_positions]
else:
# If range is small, use minutes to create at least 8 points
minutes_range = hour_range * 60
minute_interval = max(1, int(minutes_range // 8))
# Create positions based on minutes
minute_positions = np.arange(min_hour * 60, max_hour * 60 + 1, minute_interval)
tick_positions = minute_positions / 60
# Format labels as HH:MM
tick_labels = [f"{int(m/60):02d}:{int(m%60):02d}" for m in minute_positions]
# Filter tick positions to only include those within data range
tick_positions = tick_positions[
(tick_positions >= min_hour) & (tick_positions <= max_hour)
]
tick_labels = tick_labels[: len(tick_positions)]
# Combined 3D plot
ax = fig.add_subplot(111, projection="3d")
# Plot calls and puts with different colors
# Note: Changed the order of parameters to put last_price on Y-axis
ax.scatter(
df["hours"],
df["call_greeks_delta"], # X-axis
df["call_last"], # Y-axis (height)
c="blue",
label="Calls",
alpha=0.6,
)
ax.scatter(
df["hours"],
df["put_greeks_delta"], # X-axis
df["put_last"], # Y-axis (height)
c="red",
label="Puts",
alpha=0.6,
)
# Set ticks and labels
ax.set_xticks(tick_positions)
ax.set_xticklabels(tick_labels, rotation=45)
ax.set_xlim(min_hour, max_hour)
ax.set_xlabel("Time")
ax.set_ylabel("Delta")
ax.set_zlabel("Last Price")
ax.set_title("Options: Time vs Delta vs Last Price")
# Add legend
ax.legend()
# Rotate the plot for better viewing angle
ax.view_init(elev=20, azim=45)
plt.tight_layout()
plt.show()
def main(args):
logging.info(f"Using SQLite database at: {args.db_path}")
conn = sqlite3.connect(args.db_path)
try:
query = """
SELECT
Date, Time, SpotPrice, StrikePrice,
json_extract(CallContractData, '$.last') as call_last,
json_extract(CallContractData, '$.greeks_delta') as call_greeks_delta,
json_extract(CallContractData, '$.option_type') as call_option_type,
json_extract(PutContractData, '$.last') as put_last,
json_extract(PutContractData, '$.greeks_delta') as put_greeks_delta,
json_extract(PutContractData, '$.option_type') as put_option_type
FROM ContractPrices
"""
df = pd.read_sql_query(query, conn)
df["call_last"] = pd.to_numeric(df["call_last"], errors="coerce")
df["call_greeks_delta"] = pd.to_numeric(
df["call_greeks_delta"], errors="coerce"
)
df["put_last"] = pd.to_numeric(df["put_last"], errors="coerce")
df["put_greeks_delta"] = pd.to_numeric(df["put_greeks_delta"], errors="coerce")
logging.info("Creating 3D visualization...")
plot_3d_visualization(df)
finally:
conn.close()
if __name__ == "__main__":
args = parse_args()
setup_logging(args.verbose)
main(args)