-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathoptions-straddle-low-vol-trades.py
executable file
·273 lines (236 loc) · 9.1 KB
/
options-straddle-low-vol-trades.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env -S uv run --quiet --script
# /// script
# dependencies = [
# "pandas",
# "yfinance",
# "persistent-cache@git+https://github.com/namuan/persistent-cache",
# ]
# ///
"""
Options Straddle Analysis Script with given profit take and stop loss
This will only take trade if 9D Vol is below 30D Vol
Usage:
./options-straddle-low-vol-trades.py -h
./options-straddle-low-vol-trades.py -v # To log INFO messages
./options-straddle-low-vol-trades.py -vv # To log DEBUG messages
./options-straddle-low-vol-trades.py --db-path path/to/database.db # Specify database path
./options-straddle-low-vol-trades.py --dte 30 # Find next expiration with DTE > 30 for each quote date
"""
import logging
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import pandas as pd
from common.logger import setup_logging
from common.market_data import download_ticker_data
from common.options_analysis import OptionsDatabase
pd.set_option("display.float_format", lambda x: "%.4f" % x)
def can_close_trade(
open_trade,
current_underlying_price,
current_call_price,
current_put_price,
profit_take,
stop_loss,
):
total_premium_received = open_trade["PremiumCaptured"]
current_premium_value = current_call_price + current_put_price
# Calculate the premium difference
premium_diff = total_premium_received - current_premium_value
# Calculate percentage gain/loss
premium_diff_pct = (premium_diff / total_premium_received) * 100
# Profit take: If we've captured the specified percentage of the premium received
if premium_diff_pct >= profit_take:
return True, "PROFIT_TAKE"
# Stop loss: If we've lost the specified percentage of the premium received
if premium_diff_pct <= -stop_loss:
return True, "STOP_LOSS"
return False, ""
def update_open_trades(
db, quote_date, close_at_expiry, profit_take, stop_loss, high_vol_regime
):
"""Update all open trades with current prices"""
open_trades = db.get_open_trades()
for _, trade in open_trades.iterrows():
# Get current prices
underlying_price, call_price, put_price = db.get_current_prices(
quote_date, trade["StrikePrice"], trade["ExpireDate"]
)
if all(
price is not None for price in [underlying_price, call_price, put_price]
):
# Add to trade history
db.add_trade_history(
trade["TradeId"], quote_date, underlying_price, call_price, put_price
)
if close_at_expiry:
trade_can_be_closed = False
closing_reason = None
elif high_vol_regime:
trade_can_be_closed = True
closing_reason = "High Vol"
else:
trade_can_be_closed, closing_reason = can_close_trade(
trade,
underlying_price,
call_price,
put_price,
profit_take,
stop_loss,
)
if quote_date >= trade["ExpireDate"] or trade_can_be_closed:
db.update_trade_status(
trade["TradeId"],
underlying_price,
call_price,
put_price,
quote_date,
"CLOSED",
close_reason=closing_reason
if trade_can_be_closed
else "Option Expired",
)
logging.info(f"Closed trade {trade['TradeId']} at expiry")
def parse_args():
parser = ArgumentParser(
description=__doc__, formatter_class=RawDescriptionHelpFormatter
)
parser.add_argument(
"-v",
"--verbose",
action="count",
default=0,
dest="verbose",
help="Increase verbosity of logging output",
)
parser.add_argument(
"--db-path",
required=True,
help="Path to the SQLite database file",
)
parser.add_argument(
"--dte",
type=int,
default=30,
help="Find next expiration with DTE greater than this value",
)
parser.add_argument(
"--close-at-expiry",
action="store_true",
default=False,
help="Close trades on expiry without checking profit take and stop loss thresholds",
)
parser.add_argument(
"--profit-take",
type=float,
default=30.0,
help="Close position when profit reaches this percentage of premium received",
)
parser.add_argument(
"--stop-loss",
type=float,
default=100.0,
help="Close position when loss reaches this percentage of premium received",
)
parser.add_argument(
"--max-open-trades",
type=int,
default=99,
help="Maximum number of open trades allowed at a given time",
)
return parser.parse_args()
def main(args):
db = OptionsDatabase(args.db_path, args.dte)
db.connect()
try:
db.setup_trades_table()
quote_dates = db.get_quote_dates()
symbols = ["^VIX9D", "^VIX"]
market_data = {
symbol: download_ticker_data(
symbol, start=quote_dates[0], end=quote_dates[-1]
)
for symbol in symbols
}
window1 = 5
window2 = 7
df = pd.DataFrame()
df["Short_Term_VIX"] = market_data["^VIX9D"]["Close"]
df["Long_Term_VIX"] = market_data["^VIX"]["Close"]
df["IVTS"] = df["Short_Term_VIX"] / df["Long_Term_VIX"]
df["Signal_Raw"] = (df["IVTS"] < 1).astype(int) * 2 - 1
df[f"IVTS_Med{window1}"] = df["IVTS"].rolling(window=window1).median()
df[f"IVTS_Med{window2}"] = df["IVTS"].rolling(window=window2).median()
df[f"Signal_Med{window1}"] = (df[f"IVTS_Med{window1}"] < 1).astype(int) * 2 - 1
df[f"Signal_Med{window2}"] = (df[f"IVTS_Med{window2}"] < 1).astype(int) * 2 - 1
for quote_date in quote_dates:
high_vol_regime = False
try:
signal_raw_value = df.loc[quote_date, "Signal_Raw"]
if signal_raw_value == 1:
high_vol_regime = False
else:
logging.info(
f"High Vol environment. The Signal_Raw value for {quote_date} is not 1. It is {signal_raw_value}"
)
high_vol_regime = True
except KeyError:
logging.debug(f"Date {quote_date} not found in DataFrame.")
# Update existing open trades
update_open_trades(
db,
quote_date,
args.close_at_expiry,
args.profit_take,
args.stop_loss,
high_vol_regime,
)
if high_vol_regime:
continue
# Look for new trade opportunities
result = db.get_next_expiry_by_dte(quote_date, args.dte)
if result:
expiry_date, dte = result
logging.info(
f"Quote date: {quote_date} -> Next expiry: {expiry_date} (DTE: {dte:.1f})"
)
call_df, put_df = db.get_options_by_delta(quote_date, expiry_date)
if not call_df.empty and not put_df.empty:
logging.debug(f"CALL OPTION: \n {call_df.to_string(index=False)}")
logging.debug(f"PUT OPTION: \n {put_df.to_string(index=False)}")
underlying_price = call_df["UNDERLYING_LAST"].iloc[0]
strike_price = call_df["CALL_STRIKE"].iloc[0]
call_price = call_df["CALL_C_LAST"].iloc[0]
put_price = put_df["PUT_P_LAST"].iloc[0]
if not call_price or not put_price:
logging.warning(
f"Not creating trade. Call Price {call_price} or Put Price {put_price} is missing"
)
continue
# Check if maximum number of open trades has been reached
open_trades = db.get_open_trades()
if len(open_trades) >= args.max_open_trades:
logging.debug(
f"Maximum number of open trades ({args.max_open_trades}) reached. Skipping new trade creation."
)
continue
trade_id = db.create_trade(
quote_date,
strike_price,
call_price,
put_price,
underlying_price,
expiry_date,
dte,
)
logging.info(f"Trade {trade_id} created in database")
else:
logging.debug("No options matching delta criteria found")
else:
logging.warning(
f"Quote date: {quote_date} -> No valid expiration found"
)
finally:
db.disconnect()
if __name__ == "__main__":
args = parse_args()
setup_logging(args.verbose)
main(args)