-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathharq_realised_vol.py
executable file
·166 lines (127 loc) · 4.75 KB
/
harq_realised_vol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python3
"""
HARQ Model Implementation with Future Volatility Predictions
"""
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yfinance as yf
class HARQModel:
def __init__(self):
self.params = None
self.beta0 = None
self.beta1 = None
self.beta1q = None
self.beta2 = None
self.beta3 = None
def compute_realized_volatility(self, returns):
"""Compute realized volatility"""
return np.sqrt(np.sum(returns**2)) * np.sqrt(252)
def compute_realized_quarticity(self, returns):
"""Compute realized quarticity"""
return np.sum(returns**4) * (252**2)
def prepare_features(self, rv_series):
"""Prepare HAR features"""
features = pd.DataFrame(index=rv_series.index)
# Daily (previous day) volatility
features["daily_rv"] = rv_series.shift(1)
# Weekly (previous 5 days) average volatility
features["weekly_rv"] = rv_series.rolling(window=5).mean().shift(1)
# Monthly (previous 22 days) average volatility
features["monthly_rv"] = rv_series.rolling(window=22).mean().shift(1)
return features.fillna(method="ffill")
def fit(self, returns, rv_series):
"""Fit the HARQ model"""
# Calculate realized quarticity
rq_series = returns.rolling(window=22).apply(self.compute_realized_quarticity)
# Prepare features
features = self.prepare_features(rv_series)
features["daily_rv_rq"] = features["daily_rv"] * rq_series
# Remove NaN values
features = features.dropna()
y = rv_series[features.index]
# Fit model using OLS
X = features.values
X = np.column_stack([np.ones(len(X)), X])
betas = np.linalg.pinv(X.T @ X) @ X.T @ y
# Store parameters
self.beta0 = betas[0]
self.beta1 = betas[1]
self.beta1q = betas[2]
self.beta2 = betas[3]
self.beta3 = betas[4]
self.params = {
"beta0": self.beta0,
"beta1": self.beta1,
"beta1q": self.beta1q,
"beta2": self.beta2,
"beta3": self.beta3,
}
return features, y
def forecast_n_days(self, returns, rv_series, n_days=5):
"""Forecast volatility for next n days"""
if self.params is None:
raise ValueError("Model must be fitted before forecasting")
# Initialize forecasts
forecasts = []
# Get latest values
latest_rv = rv_series.iloc[-1]
latest_weekly = rv_series.iloc[-5:].mean()
latest_monthly = rv_series.iloc[-22:].mean()
latest_rq = self.compute_realized_quarticity(returns.iloc[-22:])
# Generate forecasts
for _ in range(n_days):
forecast = (
self.beta0
+ self.beta1 * latest_rv
+ self.beta1q * (latest_rv * latest_rq)
+ self.beta2 * latest_weekly
+ self.beta3 * latest_monthly
)
forecasts.append(forecast)
# Update for next iteration
latest_rv = forecast
latest_weekly = (latest_weekly * 4 + forecast) / 5
latest_monthly = (latest_monthly * 21 + forecast) / 22
return forecasts
def main():
# Download data
symbol = "SPY"
end_date = datetime.now()
start_date = end_date - timedelta(days=365)
df = yf.download(symbol, start=start_date, end=end_date)
# Calculate daily returns
df["returns"] = df["Adj Close"].pct_change()
# Calculate realized volatility
df["rv"] = df["returns"].rolling(window=22).std() * np.sqrt(252)
# Initialize and fit model
model = HARQModel()
_, _ = model.fit(df["returns"], df["rv"])
# Make predictions
n_days = 5
forecasts = model.forecast_n_days(df["returns"], df["rv"], n_days)
# Generate forecast dates
last_date = df.index[-1]
forecast_dates = [
(last_date + timedelta(days=i + 1)).strftime("%Y-%m-%d") for i in range(n_days)
]
# Print results
print(
f"\nCurrent volatility ({last_date.strftime('%Y-%m-%d')}): {df['rv'].iloc[-1]:.1%}"
)
print("\nForecasted annualized volatility:")
for date, forecast in zip(forecast_dates, forecasts):
print(f"- {date}: {forecast:.1%}")
# Plot results
plt.figure(figsize=(12, 6))
plt.plot(df.index[-60:], df["rv"].iloc[-60:], label="Historical Volatility")
# Plot forecasts
forecast_dates = [pd.to_datetime(date) for date in forecast_dates]
plt.plot(forecast_dates, forecasts, "r--", label="Forecast")
plt.title(f"{symbol} Volatility Forecast")
plt.legend()
plt.grid(True)
plt.show()
if __name__ == "__main__":
main()